2015 Massachusetts PISA Results

Released December 6, 2016

About PISA

- PISA Aggregate Results
- PISA Results Disaggregated
- Policy & Practice Implications

About PISA

- International assessment of 15-yearolds
- Administered by OECD every 3 years in:
 - ✓ Science (2015 focal subject)
 - ✓ Reading
 - Mathematics

2015 PISA in Brief

In 2015, over half a million students...

- Representing 28 million 15-year-olds in 72 countries/economies

... took an internationally agreed 2-hour test...

- Goes beyond testing whether students can reproduce what they were taught to assess students' capacity to extrapolate from what they know and creatively apply their knowledge in novel situations
- Total of 390 minutes of assessment material

... and responded to questions on...

- Their personal background, their classes and schools, their well-being and their motivation

... while parents, principals, teachers and

- system leaders provided data on:
- School policies, practices, resources, and institutional factors that help explain performance differences
- 89,000 parents, 93,000 teachers and 17,500 principals responded

About PISA

- U.S. has participated since 2000
 ✓ 240 schools
- MA has participated twice: 2012 & 2015
- In MA in 2015:
 - 1,700 students
 - ✓ 49 schools
 - Principal questionnaire
 - > Teacher questionnaire
 - 10 science per school
 - 15 non-science per school

5

About PISA Science

Three dimensions

- Content: explain phenomena scientifically
- Systemic: evaluate & design scientific inquiry
- Epistemic: interpret data & evidence scientifically

"the ability to engage with sciencerelated issues, and with the ideas of science, as a reflective citizen"

About PISA

- PISA Aggregate Results
- PISA Results Disaggregated
- Policy & Practice

Implications

The "League Table" 72 participating education systems

	SCIENCE		READING		MATH	
	US	MA	US	MA	US	MA
Higher	40	1	44	0	30	11
Similar	12	10	13	8	5	20
Lower	19	60	14	63	36	40

All comparisons are statistically significant

8

PISA Science Finding

- Since 2012:
 - Across OECD, science performance declined
 - MA science performance increased slightly (not statistically significant)

PISA Science Performance

Baseline (Level 2) proficiency students can:

- Draw on basic science content & procedures
- Explain, interpret data, & identify question addressed in experiment
- Top performers (Levels 5 & 6) can:
 - Apply scientific knowledge & skills
 To variety of situations, including unfamiliar ones

PISA Science Performance

Low performers (Level 1)

- ✓ 12% of MA students
- ✓ 20% of US students
- ✓ 21% of OECD students
- Top performers (Levels 5 & 6)
 - ✓ 14% of MA students
 ✓ 9% of US students
 ✓ 8% of OEDC students

PISA Science Findings

- Only 14% of variance in MA science performance attributable to students' socio-economic background
- 86% of variance in MA science performance attributable to instructional strategies, school practices, and student attitudes about science

PISA Science Findings

- Student performance is substantially stronger in classes where teachers:
 - Explain scientific ideas frequently
 - Frequently adapt lessons to students' needs and knowledge
- Student performance is substantially stronger in schools that:
 - Offer extracurricular science activities (such as clubs)
 - Sponsor science competitions

About PISA PISA Aggregate Results PISA Results Disaggregated Policy & Practice Implications

PISA MA Highlights

- Compared to 2012 (not all are statistically significant)
 - Hispanic performance improved in all 3 subjects
 - African-American performance improved in science & reading
 - Gender gap in reading narrowed
 - Asian performance declined in all 3 subjects

90th, 50th, and 10th percentile scores on the 2015 PISA assessment

Massachusetts Department of Elementary and Secondary Education

16

"Resilience" Percent of students in the bottom quarter of the OECD economic, social, & cultural status index who scored in top quarter of the PISA 2015 science assessment

Massachusetts Department of Elementary and Secondary Education

PISA MA Highlights

- Compared to 2012 (not all are statistically significant)
 - Higher poverty schools largely improved in all three subjects
 - The lowest poverty schools (less than 10 % free/reduced lunch) declined in all three subjects

PISA Science: Gender Findings

- No gender gap in MA science performance
- MA girls (36%) more likely than boys (30%) to expect to pursue sciencerelated career
 ✓ Higher than OECD
 - Lower than US

About PISA

- PISA Aggregate Results
- PISA Results Disaggregated
- Policy & Practice Implications

PISA Policy Implications (from the International Data)

- Commitment to universal achievement
- Incentive structures & accountability
- Capacity at point of delivery
- Coherence
- Learning system
- Resources where they yield most
- Gateways, instructional systems

Aligned incentive structures & accountability

- Students
 - ✓ Gateways
 - Incentives to study hard
- Teachers
 - Continuous individual improvement
 - Collective responsibility

Capacity at point of delivery

- Class size versus student/teacher ratio
- Large class size (e.g., Singapore, China, Vietnam) coupled with low student/teacher ratio yields more time for:
 - Teacher development
 - Teacher collaboration
 - Customized student intervention

23

Learning system

- Rigorous, coherent, focused learning standards
 - Progression to mastery
 - Supported by instructional system
- Characterized by
 - Policy alignment and coherence
 Consistency and fidelity of implementation

Resources where they yield most

- Alignment of resources with key challenges
 - Japan, Singapore, & China tie teacher advancement to willingness to move to higher challenge assignments
- Effective spending choices that prioritize teacher efficacy over smaller
 classes

- Capable central authority with authority to act
- Robust mechanisms for tackling low performance

PISA Science Implications

- Ensure that teachers:
 - Explain scientific ideas frequently
 - Adapt lessons to students' needs and knowledge
- Promote:
 - Extracurricular science activities (such as clubs)
 - Science competitions

PISA Science Implications

- Support widespread engagement with science while aiming for scientific excellence
- Improve both skills and attitudes
- Challenge gender stereotypes of STEM occupations

PISA Testing Finding

- MA and US fall in middle of frequency of mandatory testing among highperforming systems.
- In other nations, mandatory testing is often high stakes for students and not for educators

OECD/PISA for Schools

- Individual school feedback
 - ✓ Performance
 - Practice & policies
- Network with other schools
 MA schools meet summer 2017
 US schools meet fall 2017
- Offered internationally

 17 MA high schools committed
 Approximately 30 considering
 MA participation underwritten by foundations

30