“What should good student writing at this grade level look like?”

The answer lies in the writing itself.

The Writing Standards in Action Project uses high quality student writing samples to illustrate what performance to grade level standards looks like—in action.
Background Information

Writing Sample Title:
Hot Air Balloons

Text Type and Purpose: Inform/Explain
Grade level/Content area: Grade 5 English Language Arts
Type of Assignment: Research report
Standards Addressed: (RI.5.9), (W.5.2), (W.5.7), (W.5.8), (W.5.9), (L.5.2), (L.5.3)
See descriptions of these standards in the right column of the next page.

Other Content/Frameworks Addressed:
Massachusetts History and Social Science Curriculum Framework (2003)

Highlights:
This sample of student work exceeds grade level standards. It demonstrates the following attributes of effective writing. The sample:

- Examines a number of aspects of the subject
- Groups information logically and uses non-fiction text features to support comprehension
- Includes key details to engage reader interest and develop the topic
- Demonstrates writer’s voice through sentence variation and directly addressing the reader
- Shows sophisticated control of sentence structure
- Includes science and social studies content

STANDARDS-BASED COMMENTARY

The student writing sample that follows includes standards-based commentary. The commentary found in this column describes how the writing meets the standards in the Massachusetts Curriculum Framework for English Language Arts and Literacy (2017) and other content frameworks when applicable.

Understanding the Standards-Based Commentary

1. Grade-specific standards addressed are:
 - Listed in the column to the right of student work by strand, grade, and number (or number and letter, where applicable)
 - Marked by a colored block with a letter code, also in the column to the right of student work

 EXAMPLE: A

2. Colored arrow blocks beneath each standard in the right column:
 - Are of the same color and letter code as the block that marks the standard being addressed
 - Mark standards-based commentary related to the standard being addressed
 - Appear in alphabetical order

 EXAMPLE: A1

3. Corresponding colored arrow blocks within the text:
 - Set off sections of student work to which commentary applies
 - Do not necessarily appear in alphabetical order—but where evidence of a particular standard exists

 EXAMPLE: (begin) A1 section A1 (end)
Instructional Practices/Resources:
The teacher used the following practices and resources:

• Mini-research assignments before this project
• Students made oral reports/teacher and peers used rubrics to offer feedback
• Periodic individualized conference time
• Laptops, library resources, encyclopedias, journals

Assignment Description:
Students conducted research on a topic of interest and prepared a written report that included the citation of primary, secondary and web-based sources.

Intended Audience:
Peers and teacher

Time:
1 month or more – class and independent work

Writing Process:
Alone; in class; with teacher feedback; with opportunity for revision; topic chosen by student; pre-writing; organizing; drafting; revising; self-editing; peer-editing/peer response; teacher-student conference; publishing

Materials:
Rubrics, exemplars, library resources, encyclopedias, journals, online materials

Reading Standards for Informational Text: Grade 5, Standard 9 (RI.5.9)
Integrate information from several texts on the same topic in order to write or speak knowledgeably about the subject.
EXAMPLE:

Writing Standards:
Grade 5, Standard 2 (W.5.2)
Write informative/explanatory texts to examine a topic and convey ideas and information clearly.
EXAMPLE:

Writing Standards:
Grade 5, Standard 7 (W.5.7)
Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic.
EXAMPLE:

Writing Standards:
Grade 5, Standard 8 (W.5.8)
Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources.
EXAMPLE:

Writing Standards:
Grade 5, Standard 9 (W.5.9)
Integrate information from several texts on the same topic in order to write or speak knowledgeably about the subject.
EXAMPLE:

Language Standards:
Grade 5, Standard 2 (L.5.2)
Demonstrate command of the conventions of standard English capitalization, punctuation, and spelling when writing.
EXAMPLE:

Language Standards:
Grade 5, Standard 3 (L.5.3)
Use knowledge of language and its conventions when writing, speaking, reading, or listening.
EXAMPLE:

Please note:
The samples may contain inaccuracies in wording and content or shortcomings in the use of standard English conventions.
Inform / Explain

In this sample...

Information is presented in a clear and logical manner, while also maintaining a strong and engaging voice. It smoothly incorporates information from multiple sources, effectively paraphrasing and summarizing this material to create a unique presentation on the topic. It also exhibits the use of organizational features such as chapters and a table of contents that support the reader's understanding. Although the sample includes a few errors in syntax, overall the use of language is sophisticated and the author takes a risk by addressing the audience directly in order to connect effectively with the reader. The assignment and the resulting work provide an example of the integration of content area learning and literacy development.

Hot Air Balloons
(\textit{photo of a hot air balloon})

A2 Table of Contents

Introduction, Page 4
Chapter 1: Page 6, The Idea
Chapter 2, Page 8, An Invention in the Making
Chapter 3, Page 10, A New Balloon, With Passengers
Chapter 4: Page 12, The Big Moment.
Chapter 5: Page 14, How it Works
Chapter 6: Page 16, How to Fly a Hot-Air Balloon
Conclusion: Page 18,
Bibliography: Page, 20
Remarks: Page 22

\begin{section}
\end{section}
Introduction \(\text{A2} \)

Hot-air balloons, where to start. There are so many things to say, like the history, the inventors and how a hot-air balloon works. I guess the best place to start would be at the beginning, it’s always a good place to start. When I say at the beginning, I mean the beginning of the history of all hot air balloons and their inventors. One thing I know for sure is that this report will be long and I don’t want to make it longer by holding you up here, so go ahead to the next page and start reading. The history of hot-air balloons is waiting for you. What are you waiting for, go ahead, don’t be afraid. History doesn’t bite, it only informs. \(\text{A3} \)

Chapter 1

The Idea \(\text{A2} \)

The inventors of the first hot-air balloon were Joseph and Etienne Montgolfier. They lived in Annonay, France and worked at the family paper mill. On their first trip to Paris they got their idea. The brothers...
were there to see a special event from Japan on paper lanterns that floated on air, how could that be? Men went around to all of the paper lanterns and lit tiny candles inside of them as the event started. Suddenly, some of the lanterns started rising, slowly but surely, and the crowd gasped with amazement. Back at home Joseph conducted experiments, and after reading on the subject of air, he put the event and reading together to get an idea.

(pictures of Joseph Michel Montgolfier and Jacques Ettienne Montgolfier)

Chapter 2
An Invention in the Making

Back at home, Joseph didn’t hesitate to start experimenting. He tried paper and silk, but he wanted something that would work better. By this time Etienne was interested and decided to help his brother. Maybe Joseph would make better progress if Etienne helped. The brothers thought that smoke was the key to floating, so their tried burning many different things. Soon they discovered it was the hot air and made bigger balloons. After more experiment, one balloon flew
1,000 feet. They also discovered that the best materials were cloth on the outside and paper on the inside. On June 5, 1783, the brothers presented a balloon that flew higher, farther, and longer. After, a man named Jacques Charles made a balloon and filled it with hydrogen gas and it flew higher, farther, and longer than the Montgolfier brothers’. This all led up to the big experiment.

Chapter 3
The New Balloon, With Passengers

After Professor Charles’s balloon had been such a success, the Montgolfier brothers knew they could do better. They soon announced that their balloon would be better, and it would carry passengers.

When the king of France heard about this, he invited the brothers to France without a moment’s hesitation. The King wanted the balloon to be made in France and launched at Versailles Palace. Etienne and Joseph agreed and move to Paris. For about a month Etienne, Joseph, and another man named M. Reveillon (her worked at a paper mill too) worked on a balloon especially made for the king. The balloon was the
largest yet being 57 feet tall and 41 feet around. The big day was on September 19, 1783 and the anxious crowd gathered around. Nobody could see the passengers anywhere until finally Joseph pulled a basket with only a lamb, a rooster, and a duck. Everyone was shocked until laughter arose in the crowd. Suddenly there was silence, it was time.

Chapter 4
The Big Moment

The men holding the ropes let go after a dramatic countdown. The balloon went up and up and up. The balloon went up 1,700 feet before descending and traveled 2 miles. The balloon traveled for eight minutes which isn’t a lot compared to how high and far it went.

When the balloon landed, the lamb had fallen on top of the rooster and its wing was barely hurt. In amazement the people walked and followed the balloon to where it landed, they sure got a work-out that day. September 19, 1783 was a very important day in ballooning history.

(photo of a hot air balloon)
After all that I bet you’re wondering how a hot air balloon works. Well that’s why I’m here. A lot of it has to do with molecules in gases also heat and hot air. One thing you need to know is that in a gas, the molecules are spread out and can move freely. When the heated molecules “move faster and farther apart” causing them to float.

You’re probably wondering what gases have to do with air, well, that’s the thing, air is a form of gas. And when the molecules in the air are heated they move faster and farther apart until the air in the balloon causes the balloon to float. That is why hot air is used in a balloon instead of cold.

How to Fly a Hot-Air Balloon

It’s may seem hard to control and fly a hot air balloon, but the truth is it’s fairly easy. To ascend you have to pull the lever that

Writing. Grade 5, Standard 7 AND Writing. Grade 5, Standard 9 AND Reading Informational Text. Grade 5, Standard 9

W.5.7 AND W.5.9 AND RI.5.9

W.5.7
Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic.

W.5.9
Draw evidence from literary or informational texts to support written analysis, reflection, and research, applying one or more grade 5 standards for Reading Literature or Reading Informational Text as needed.

RI.5.9
Integrate information from several texts on the same topic in order to write or speak knowledgeably about the subject.

H Examples: 1 · 2 · 3
The writer synthesizes information from books and the internet, to explain the scientific aspects of how gases expand to make a balloon float (…molecules ‘move faster and farther apart’ causing them to float). In addition, s/he also provides evidence gleaned from research to explain the technical aspects of operating a hot-air balloon (To ascend….To descend…).
opens the propane valve and turn knobs to control how much heat and gas go into the balloon. The hotter the flame is, the faster you go up. To slow your ascent or start to sink (depending on how long you do this for) when you pull the cord connected to the parachute valve. Doing this will let in air from outside the balloon making the air’s temperature drop and cold air doesn’t float. To descend you would have to hold the parachute valve long enough for the balloon to sink to the ground. These are the only controls needed to fly a hot-air balloon; it’s as simple as that.

(photo of flames of heater used to make a hot air balloon rise)

I have learned so many things from this project. I learned how hot-air balloons work and the history of them and their inventors. I also learned a thing or two about molecules. I hope you learned a lot too. My research aligns with my standard because my standard is Science, Technology and Engineering- Strand: Earth and Space Science-6.

Air temperature, moisture, wind speed and direction, and precipitation
make up the weather in a particular place and time. I explained how the air temperature affects the way hot-air balloons move and work. I think the most important thing to take away from this is that you should share your ideas not matter what they are; you never know, they could give someone a brilliant idea.

Bibliography

Books

Website