Standards Map

Science and Technology/Engineering > Grade High School > Physics

Accessibility Mode: Note: You are viewing this information in accessibility mode. To view the map, enlarge your window or use a larger device.

Science and Technology/Engineering | Grade : High School

Discipline - Physics

Core Idea - Motion and Stability: Forces and Interactions

[HS.PHY.2.4] - Use mathematical representations of Newton’s law of gravitation and Coulomb’s law to both qualitatively and quantitatively describe and predict the effects of gravitational and electrostatic forces between objects. Clarification Statement: Emphasis is on the relative changes when distance, mass or charge, or both are changed. State Assessment Boundaries: State assessment will be limited to systems with two objects. Permittivity of free space is not expected in state assessment.


Resources:



Predecessor Standards:

  • 6.PS.2.4
    Use evidence to support the claim that gravitational forces between objects are attractive and are only noticeable when one or both of the objects have a very large mass. Clarification Statement: Examples of objects with very large masses include the Sun, Earth, and other planets. State Assessment Boundary: Newton’s law of gravitation or Kepler’s laws are not expected in state assessment.
  • 7.PS.2.3
    Analyze data to describe the effect of distance and magnitude of electric charge on the strength of electric forces. Clarification Statement: Includes both attractive and repulsive forces. State Assessment Boundaries: State assessment will be limited to proportional reasoning. Calculations using Coulomb’s law or interactions of sub-atomic particles are not expected in state assessment.

Successor Standards:

No Successor Standards found.

Same Level Standards:

  • SLCA.9-10.4
    Present information, findings, and supporting evidence clearly, concisely, and logically such that listeners can follow the line of reasoning and the organization, development, vocabulary, substance, and style are appropriate to purpose, audience, and task.
  • AI.N-Q.A.1
    Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.*
  • AI.N-Q.A.2
    Define appropriate quantities for the purpose of descriptive modeling.*
  • AI.A-SSE.A.1
    Interpret expressions that represent a quantity in terms of its context.*
  • AI.A-CED.A.4
    Rearrange formulas to highlight a quantity of interest using the same reasoning as in solving equations (Properties of equality).* For example, rearrange Ohm’s law R=V2/P to solve for voltage, V. Manipulate variables in formulas used in financial contexts such as for simple interest, I=Prt.
  • AI.F-LE.A.1.b
    Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.*
  • HS.PHY.2.9
    Evaluate simple series and parallel circuits to predict changes to voltage, current, or resistance when simple changes are made to a circuit. Clarification Statements: Predictions of changes can be represented numerically, graphically, or algebraically using Ohm’s law. Simple changes to a circuit may include adding a component, changing the resistance of a load, and adding a parallel path, in circuits with batteries and common loads. Simple circuits can be represented in schematic diagrams. State Assessment Boundary: Use of measurement devices and predictions of changes in power are not expected in state assessment.