[Massachusetts Comprehensive Assessment System (MCAS) Logo] Massachusetts Comprehensive Assessment System Grade 10 Mathematics Reference Sheet AREA FORMULAS square...........[A equals s squared] rectangle........[A equals bh] parallelogram....[A equals bh] triangle.........[A equals one half bh] trapezoid........[A equals one half h(b subscript 1 plus b subscript 2)] circle...........[A equals pi sign r squared] LATERAL SURFACE AREA FORMULAS right rectangular prism..........[LA equals two(hw) plus two(lh) right circular cylinder..........[LA equals two pi sign rh] right circular cone..............[LA equals pi sign r script l] (script l equals slant height) right square pyramid...........[LA equals two s script l] (script l equals slant height) TOTAL SURFACE AREA FORMULAS cube..........[SA equals six s squared] right rectangular prism......[SA equals two (lw) plus two (hw) plus two (lh)] sphere........[SA equals four pi sign r squared] right circular cylinder......[SA equals two pi sign r squared plus two pi sign rh] right circular cone..........[SA equals pi sign r squared plus pi sign r script l] (script l equals slant height) right square pyramid.........[SA equals s squared plus two s script l] (script l equals slant height) VOLUME FORMULAS cube..........[V equals s cubed] (s equals length of an edge) right rectangular prism......[V equals lwh or V equals Bh] (B equals area of a base) sphere........[V equals four thirds pi sign r cubed] right circular cylinder......[V equals pi sign r squared h] right circular cone..........[V equals one third pi sign r squared h] right square pyramid.........[V equals one third s squared h] CIRCLE FORMULAS [C equals two pi sign r] [A equals pi sign r squared] SPECIAL RIGHT TRIANGLES [forty-five forty-five ninety right triangle where the length of each leg equals x and the length of the hypotenuse equals x square root two] [thirty sixty ninety right triangle where the length of the shorter leg equals y, the length of the longer leg equals y square root three, and the length of the hypotenuse equals two y]