

In tomato plants, the allele for red fruit color (\mathbf{R}) is dominant to the allele for yellow fruit color (\mathbf{r}) . The allele for round-shaped fruit (\mathbf{F}) is dominant to the allele for pear-shaped fruit (\mathbf{f}) .

Two tomato plants, heterozygous for fruit color and fruit shape, are crossed. The Punnett square for this dihybrid cross is shown below.

	RF	Rf	rF	rf
RF	RRFF	RRFf	RrFF	RrFf
Rf	RRFf	RRff	RrFf	Rrff
rF	RrFF	RrFf	rrFF	rrFf
rf	RrFf	Rrff	rrFf	rrff

- a. For this cross, identify all the possible phenotypes of the offspring.
- b. Considering only fruit color, determine the ratio of offspring with red fruit to offspring with yellow fruit predicted by the Punnett square.
- c. Considering only fruit shape, determine the ratio of offspring with round-shaped fruit to offspring with pear-shaped fruit predicted by the Punnett square.
- d. Explain what is meant by independent assortment **and** describe one way in which your answers to parts (a), (b), and (c) support the conclusion that the genes for fruit color and fruit shape sort independently.