12

A student performs an experiment to determine the relationships among voltage, current, and resistance. The student's procedure includes the following steps:

- Connect a 3.0 V battery to a 42 Ω resistor.
- Measure the current using an ammeter and record the value.
- Replace the 42 Ω resistor with a 54 Ω resistor, and then with a 66 Ω resistor, measuring and recording the current for each resistor.

The table below shows the data collected.

Student's Data

Resistance (Ω)	Current (A)
42	0.071
54	0.056
66	0.045

- a. In your Student Answer Booklet, draw a schematic diagram of the student's original circuit with the 42 Ω resistor. Be sure to label the battery and the resistor.
- b. Describe in words the relationship between current and resistance as voltage is held constant.

The student will investigate these relationships further using a different experiment.

- c. Write a procedure the student could use to test the relationships among voltage, current, and resistance if the only materials available for use are three 3.0 V batteries, one 30 Ω resistor, wire, and an ammeter.
- d. In your Student Answer Booklet, make a data table similar to the Student's Data table above to show the expected current measurements for your procedure from part (c). Show your calculations and include units in your answer.