2022 MCAS Sample Student Work and Scoring Guide

Grade 8 Mathematics

Question 12: Constructed-Response

Reporting Category: Geometry

Standard: 8.G.A. 5 - Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.
Item Description: Use facts about the angle sum of triangles to calculate angle measures and determine whether two triangles are similar.
Calculator: Allowed

View item in MCAS Digital Item Library

Scoring Guide

Select a score point in the table below to view the sample student response.

Score*	Description
$\underline{\text { 4A }}$	The student response demonstrates an exemplary understanding of the Geometry concepts involved in using informal arguments to establish facts about the angle sum and exterior angle of triangles and the angle-angle criterion for similarity of triangles.
$\underline{\text { 4B }}$	The student finds missing angle measures in a diagram and determines whether two triangles in the diagram are similar.
$\underline{\mathbf{3}}$	The student response demonstrates a good understanding of the Geometry concepts involved in using informal arguments to establish facts about the angle sum and exterior angle of triangles and the angle-angle criterion for similarity of triangles. Although there is significant evidence that the student was able to recognize and apply the concepts involved, some aspect of the response is flawed. As a result, the response merits 3 points.
$\underline{\underline{\mathbf{2}}}$	The student response demonstrates a fair understanding of the Geometry concepts involved in using informal arguments to establish facts about the angle sum and exterior angle of triangles and the angle-angle criterion for similarity of triangles. While some aspects of the task are completed correctly, others are not. The mixed evidence provided by the student merits 2 points.
$\underline{\mathbf{1}}$	The student response demonstrates a minimal understanding of the Geometry concepts involved in using informal arguments to establish facts about the angle sum and exterior angle of triangles and the angle-angle criterion for similarity of triangles.
$\underline{\mathbf{0}}$	The student response contains insufficient evidence of an understanding of the Geometry concepts involved in using informal arguments to establish facts about the angle sum and exterior angle of triangles and the angle-angle criterion for similarity of triangles. As a result, the response does not merit any points.

[^0]
Score Point 4A

This question has four parts.
This figure is composed of triangles $J K L, J K M$, and $K M L$.

In the figure,

- point M lies on side $J L$,
- the measure of $\angle J K M$ is 50°,
- the measure of $\angle K J M$ is 60°, and
- the measure of $\angle K L M$ is 33°.

Part A

What is the measure, in degrees, of $\angle J M K$? Show or explain how you got your answer.
Enter your answer and your work or explanation in the space provided.

The measure of $\angle J M K$ is 70°. I know this because the total sum of the degrees in a triangle must be 180° and if the sum of the known angles is 110° and $180-110=70$ then $\angle J M K$ must be 70°.

Part B

What is the sum of the measures, in degrees, of $\angle J M K$ and $\angle K M L$? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.

The sum of the measures of $\angle J M K$ and $\angle K M L$ is 180°. I know this because the angles are supplimentary because any angle in a triangle is supplementary to its exterior angle, and supplementary angles add up to be 180°.

Part C

What is the measure, in degrees, of $\angle M K L$? Show or explain how you got your answer.
Enter your answer and your work or explanation in the space provided.
> $\angle M K L$ is 37°. I got this answer because the sum of $\angle K M L$ and $\angle M L K$ is 143° and the sum of all the angles in a triangle must add up to 180°

Part D
Is triangle $J K L$ similar to triangle $K M L$? Explain your reasoning.

Enter your answer and your explanation in the space provided.
$\triangle J K L$ is not similar to $\triangle K M L$ because it does not follow the AA similarity postulate and we do not have enough information to apply SSS or SAS similarity theorems.

Score Point 4B

This question has four parts.
This figure is composed of triangles $J K L, J K M$, and $K M L$.

In the figure,

- point M lies on side $J L$,
- the measure of $\angle J K M$ is 50°,
- the measure of $\angle K J M$ is 60°, and
- the measure of $\angle K L M$ is 33°.

Part A

What is the measure, in degrees, of $\angle J M K$? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.

The measure of $\angle J M K$ is 70°. I know this because I know all of the angles in a triangle add up to a total of 180°. Because I see that $\angle J M K$ is a part of $\triangle J K M$, and the other two angles in $\triangle J K M$ are 50° and 60°, I know that if I add 50+60, which equals 110 , and subtract that from 180 , which would be 70°, that would be the $\mathrm{m} \angle J M K$.

Part B

What is the sum of the measures, in degrees, of $\angle J M K$ and $\angle K M L$? Show or explain how you got your answer.
Enter your answer and your work or explanation in the space provided.

The sum of the measure of $\angle J M K$ and $\angle K M L$ would be a total of 180°. I know this because two angles that form a straight line will always have angles that measure up to be 180°. And because I see that $\angle J M K$ and $\angle K M L$ form a straight line, I know that their angle measures will add up to 180°.

Part C

What is the measure, in degrees, of $\angle M K L$? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.

The measure of $\angle M K L$ is a total of 37°. I know this because I also know that $\mathrm{m} \angle J M K$ is 70°, so $\mathrm{m} \angle K M L$ must be 110° because $\mathrm{m} \angle J M K$ and $\mathrm{m} \angle K M L$ are equal to 180°. Then I knew that all the angle measures of a triangle add up to 180°, and because the two angles in $\triangle K M L$ are 33° and 110°, the last angle in that triangle, $\angle M K L$, must be equal to 37°.

Part D

Is triangle $J K L$ similar to triangle $K M L$? Explain your reasoning.

Enter your answer and your explanation in the space provided.

Triangle JKL is not similar to triangle KML. I know this because for two triangles to be similar, at least two of their angles must be the same. In $\triangle K M L$, the angles are $33^{\circ}, 37^{\circ}$, and 110°. In $\triangle J K L$, the angles are $33^{\circ}, 87^{\circ}$, and 60°. Because the angles in these triangles are not the same, they are not similar.

Score Point 3

This question has four parts.
This figure is composed of triangles $J K L, J K M$, and $K M L$.

In the figure,

- point M lies on side $J L$,
- the measure of $\angle J K M$ is 50°
- the measure of $\angle K J M$ is 60°, and
- the measure of $\angle K L M$ is 33°

Part A
What is the measure, in degrees, of $\angle J M K$? Show or explain how you got your answer.
Enter your answer and your work or explanation in the space provided.

In order to find the answer I set up the equation $60^{\circ}+50^{\circ}+m^{\circ}=180^{\circ}$. When you are finding the measure of angles in a triangle they must all add up to 180° so in order to find m I subtracted $60^{\circ}+50^{\circ}$ which is 110° from 180° and got 70°.
$\angle J M K=70^{\circ}$.

Part B
What is the sum of the measures, in degrees, of $\angle J M K$ and $\angle K M L$? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.

$$
\begin{aligned}
& 180^{\circ} \text { because } \angle J M K=70^{\circ} \text { and } \\
& \angle K M L=110^{\circ} \text { and } \\
& 70^{\circ}+110^{\circ}=180^{\circ} \text {. The reason I } \\
& \text { know } \angle K M L \text { is } 110^{\circ} \text { is because } \\
& \text { when there is a straight line its angle } \\
& \text { is always } 180^{\circ} \text {. And } \\
& \angle J M L=180^{\circ} \text { so I just added the } \\
& \text { two angles together and got } 180^{\circ} \text {. }
\end{aligned}
$$

Part C
What is the measure, in degrees, of $\angle M K L$? Show or explain how you got your answer.
Enter your answer and your work or explanation in the space provided.

$$
\begin{aligned}
& \angle M K L=37^{\circ} \text { because } \\
& \angle L M K=110^{\circ}{ }^{\circ} \text { and } \\
& \angle K L M=33^{\circ} \\
& 110^{\circ}+33^{\circ}=143^{\circ} \\
& 180-143=37 \\
& \angle M K L=37^{\circ}
\end{aligned}
$$

Part D

Is triangle $J K L$ similar to triangle $K M L$? Explain your reasoning.

Enter your answer and your explanation in the space provided.

Yes because they are both obtuse triangles they are both the biggest angles in their triangle.

Score Point 2

This question has four parts.
This figure is composed of triangles $J K L, J K M$, and $K M L$.

In the figure,

- point M lies on side $J L$,
- the measure of $\angle J K M$ is 50°,
- the measure of $\angle K J M$ is 60°, and
- the measure of $\angle K L M$ is 33°.

Part A
What is the measure, in degrees, of $\angle J M K$? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.

70°

I got my answer by adding 50 and 60 and then subtracting it from 180.

Part B

What is the sum of the measures, in degrees, of $\angle J M K$ and $\angle K M L$? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.

213°

I got my answer by first finding out what the angle m was. Then, I added the angles together to get my answer.

Part C

What is the measure, in degrees, of $\angle M K L$? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.

37°

I got my answer by adding 33 to 110 , which is the angle I got from a previous part. Then, I subtracted the answer from 180 to get my final answer.

Part D

Is triangle $J K L$ similar to triangle $K M L$? Explain your reasoning.

Enter your answer and your explanation in the space provided.

No, both triangles are not similar. They are two different types of triangles.

Score Point 1

This question has four parts.
This figure is composed of triangles $J K L, J K M$, and $K M L$.

In the figure,

- point M lies on side $J L$,
- the measure of $\angle J K M$ is 50°,
- the measure of $\angle K J M$ is 60°, and
- the measure of $\angle K L M$ is 33°.

Part A

What is the measure, in degrees, of $\angle J M K$? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.
$\angle J M K$ is 60° because it is equal with $\angle K J M$

Part B

What is the sum of the measures, in degrees, of $\angle J M K$ and $\angle K M L$? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.

The sum of $\angle J M K$ and $\angle K M L$ is 180° becuase together they make a straight line

Part C

What is the measure, in degrees, of $\angle M K L$? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.
$\angle M K L$ is 33° becuase it is equal to $\angle K L M$

Part D

Is triangle $J K L$ similar to triangle $K M L$? Explain your reasoning.

Enter your answer and your explanation in the space provided.
triangle JKL and KML are similiar

Score Point 0

This question has four parts.
This figure is composed of triangles $J K L, J K M$, and $K M L$.

In the figure,

- point M lies on side $J L$,
- the measure of $\angle J K M$ is 50°,
- the measure of $\angle K J M$ is 60°, and
- the measure of $\angle K L M$ is 33°.

Part A

What is the measure, in degrees, of $\angle J M K$? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.

To find the measure I subtracted 60° and 33° and got 27°. So the measure of JMK in degrees is 27°.

Part B

What is the sum of the measures, in degrees, of $\angle J M K$ and $\angle K M L$? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.

The sum of JMK and KML is 100 . This is becasue the degree of JMK is 27° and KML is 73° which adds up to 100°.

Part C

What is the measure, in degrees, of $\angle M K L$? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.

The measure is 90 . This is because one side of K is 50° and in order to equal 90° you have to add 40°, so that is the measure of MKL.

Part D

Is triangle $J K L$ similar to triangle $K M L$? Explain your reasoning.

Enter your answer and your explanation in the space provided.

Yes. They are almost the same. This is because the measure of both is withen 10°. This is because they are both measures of K and add up to 90°

[^0]: *Letters are used to distinguish between sample student responses that earned the same score (e.g., 4A and 4B).

