MASSACHUSETTS DEPARTMENT OF ELEMENTARY AND SECONDARY EDUCATION

Massachusetts Comprehensive Assessment System 2018 Tryout: Introductory Physics Reference Sheet

Formulas

$S_{average} = \frac{d}{\Delta t}$	p = mv	$F_{e} = k \frac{q_1 q_2}{d^2}$	Q = mc∆T
$v_{average} = \frac{\Delta x}{\Delta t}$	$F\Delta t = \Delta p$	$KE = \frac{1}{2}mv^2$	$v = \lambda f$
$a_{average} = \frac{\Delta v}{\Delta t}$	F _{net} = ma	∆PE = mg∆h	$T = \frac{1}{f}$
$v_f = v_i + a\Delta t$	F _g = mg	$W = \Delta E = Fd$	V = IR
$\Delta x = v_{i} \Delta t + \frac{1}{2} a \Delta t^{2}$	$F_{g} = G \frac{m_{1}m_{2}}{d^{2}}$	eff = $\frac{E_{out}}{E_{in}}$	

Variables

a = acceleration	KE = kinetic energy	s = speed	
c = specific heat	$\lambda =$ wavelength	$\Delta t = change in time$	
d = distance	m = mass	T = period	
E = energy	p = momentum	ΔT = change in temperature	
eff = efficiency	$\Delta PE = change in$	v = velocity	
f = frequency	gravitational potential energy	V = potential difference (voltage)	
F = force	q = charge of particle	W = work	
g = acceleration due to gravity	Q = heat added or removed	$\Delta x = change in position (displacement)$	
Δh = change in height	R = resistance		
I = current			

Unit Symbols

ampere, A	hertz, Hz	meter, m	second, s
coulomb, C	joule, J	newton, N	volt, V
degree Celsius, °C	kilogram, kg	ohm, Ω	

Definitions

speed of electromagnetic waves in a vacuum = 3×10^8 m/s

- G = Universal gravitational constant = 6.7 × $10^{-11} \frac{N \cdot m^2}{kg^2}$
- k = Coulomb's constant = 9 × $10^9 \frac{N \cdot m^2}{C^2}$
- $g \approx 10 \text{ m/s}^2 \text{ at Earth's surface} \qquad 1 \text{ N} = 1 \frac{\text{kg} \cdot \text{m}}{\text{s}^2} \qquad 1 \text{ J} = 1 \text{ N} \cdot \text{m}$