2016 MA STE MS-HS Life Science Strand Map (April 2016) Please direct comments, suggested edits, and questions to: mathsciencetech@doe.mass.edu. The standards and strand maps are available at: www.doe.mass.edu/stem/review.html (*) denotes integration of technology/engineering through a practice or core idea. Concept: Math: S-ID.A.1,2,3 OutgoingConnection to HS-LS2-2. Use mathematical representations to support explanations that biotic and abiotic factors affect biodiversity, including genetic diversity within a population and species diversity within an ecosystem. Clarification Statements: Examples of biotic factors could include relationships among individuals (feeding relationships, symbiosis, competition) and disease. Examples of abiotic factors could include climate and weather conditions, natural disasters, and availability of resources. Examples of mathematical representations include finding the average, determining trends, and using graphical comparisons of multiple sets of data. Concept: 6.MS-LS4-1. Analyze and interpret evidence from the fossil record to describe organisms and their environment, extinctions and changes to life forms throughout the history of Earth. Clarification Statement: Examples of evidence include sets of fossils that indicate a specific type of environment, anatomical structures that indicate the function of an organism in the environment, and fossilized tracks that indicate behavior of organisms. State Assessment Boundary: Names of individual species, geological eras in the fossil record, or mechanisms for extinction or speciation are not expected in state assessment. OutgoingConnection to HS-LS4-1. Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence, including molecular, anatomical, and developmental similarities inherited from a common ancestor (homologies), seen through fossils and documented laboratory and field observations. Clarification Statement: Examples of evidence can include the work of Margulis on endosymbiosis, examination of genomes, and analyses of vestigial or skeletal structures. IncomingConnection from ELA: SL.6.2 IncomingConnection from 3-LS4-4 IncomingConnection from 3-LS4-1 Concept: ELA:WHST.9-10.1 OutgoingConnection to HS-LS3-2. Make and defend a claim based on evidence that genetic variations (alleles) may result from (a) new genetic combinations via the processes of crossing over and random segregation of chromosomes during meiosis, (b) mutations that occur during replication, and/or (c) mutations caused by environmental factors. Recognize that mutations that occur in gametes can be passed to offspring. Clarification Statement: Examples of evidence of genetic variation can include the work of McClintock in crossing over of maize chromosomes and the development of cancer due to DNA replication errors and UV ray exposure. State Assessment Boundary: Specific phases of meiosis or identification of specific types of mutations are not expected in state assessment. Concept: 8.MS-LS3-2. Construct an argument based on evidence for how asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. Compare and contrast advantages and disadvantages of asexual and sexual reproduction. Clarification Statements: Examples of an advantage of sexual reproduction can include genetic variation when the environment changes or a disease is introduced, while examples of an advantage of asexual reproduction can include not using energy to find a mate and fast reproduction rates. Examples of a disadvantage of sexual reproduction can include using resources to find a mate, while a disadvantage in asexual reproduction can be the lack of genetic variation when the environment changes or a disease is introduced. OutgoingConnection to HS-LS3-1. Develop and use a model to show how DNA in the form of chromosomes is passed from parents to offspring through the processes of meiosis and fertilization in sexual reproduction. Clarification Statement: The model should demonstrate that an individual’s characteristics (phenotype) result, in part, from interactions among the various proteins expressed by one’s genes (genotype). State Assessment Boundary: Identification of specific phases of meiosis or the biochemical mechanisms involved are not expected in state assessment. IncomingConnection from 3-LS1-1 IncomingConnection from 8.MS-LS3-4(MA). Develop and use a model to show that sexually reproducing organisms have two of each chromosome in their cell nuclei, and hence two variants (alleles) of each gene that can be the same or different from each other,with one random assortment of each chromosome passed down to offspring from both parents. Clarification Statement: Examples of models can include Punnett squares, diagrams (e.g., simple pedigrees), and simulations. State Assessment Boundary: State assessment will limit inheritance patterns to dominant-recessive alleles only. IncomingConnection from ELA: RST.6-8.1 Concept: 3-LS1-1 OutgoingConnection to 8.MS-LS3-2. Construct an argument based on evidence for how asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. Compare and contrast advantages and disadvantages of asexual and sexual reproduction. Clarification Statements: Examples of an advantage of sexual reproduction can include genetic variation when the environment changes or a disease is introduced, while examples of an advantage of asexual reproduction can include not using energy to find a mate and fast reproduction rates. Examples of a disadvantage of sexual reproduction can include using resources to find a mate, while a disadvantage in asexual reproduction can be the lack of genetic variation when the environment changes or a disease is introduced. Concept: ELA: SL.9-10.4 OutgoingConnection to HS-LS4-1. Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence, including molecular, anatomical, and developmental similarities inherited from a common ancestor (homologies), seen through fossils and documented laboratory and field observations. Clarification Statement: Examples of evidence can include the work of Margulis on endosymbiosis, examination of genomes, and analyses of vestigial or skeletal structures. Concept: ELA: WHST.6-8.1 OutgoingConnection to 6.MS-LS4-2. Construct an argument using anatomical structures to support evolutionary relationships among and between fossil organisms and modern organisms. Clarification Statement: Evolutionary relationships include (a) some organisms have similar traits with similar functions because they were inherited from a common ancestor, (b) some organisms have similar traits that serve similar functions because they live in similar environments, and (c) some organisms have traits inherited from common ancestors that no longer serve their original function because their environments are different than their ancestors' environments. Concept: HS-LS2-7. Analyze direct and indirect effects of human activities on biodiversity and ecosystem health, specifically habitat fragmentation, introduction of non-native or invasive species, overharvesting, pollution, and climate change. Evaluate and refine a solution for reducing the impacts of human activities on biodiversity and ecosystem health.* Clarification Statement: Examples of solutions can include captive breeding programs, habitat restoration, pollution mitigation, energy conservation, and ecotourism. IncomingConnection from 7.MS-LS2-5. Evaluate competing design solutions for protecting an ecosystem. Discuss benefits and limitations of each design.* Clarification Statements: Examples of design solutions could include water, land, and species protection and the prevention of soil erosion. Examples of design solution constraints could include scientific, economic, and social considerations. IncomingConnection from ELA:WHST.9-10.9 IncomingConnection from HS-LS2-6. Analyze data to show ecosystems tend to maintain relatively consistent numbers and types of organisms even when small changes in conditions occur but that extreme fluctuations in conditions may result in a new ecosystem. Construct an argument supported by evidence that ecosystems with greater biodiversity tend to have greater resistance and to change and resilience. Clarification Statement: Examples of changes in ecosystem conditions could include modest biological or physical changes, such as moderate hunting or a seasonal flood; and extreme changes, such as volcanic eruption, fires, the decline or loss of a keystone species, climate changes, ocean acidification, or sea level rise. IncomingConnection from 8.MS-ESS3-5 Concept: 8.MS-LS3-4(MA). Develop and use a model to show that sexually reproducing organisms have two of each chromosome in their cell nuclei, and hence two variants (alleles) of each gene that can be the same or different from each other,with one random assortment of each chromosome passed down to offspring from both parents. Clarification Statement: Examples of models can include Punnett squares, diagrams (e.g., simple pedigrees), and simulations. State Assessment Boundary: State assessment will limit inheritance patterns to dominant-recessive alleles only. OutgoingConnection to 8.MS-LS3-2. Construct an argument based on evidence for how asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. Compare and contrast advantages and disadvantages of asexual and sexual reproduction. Clarification Statements: Examples of an advantage of sexual reproduction can include genetic variation when the environment changes or a disease is introduced, while examples of an advantage of asexual reproduction can include not using energy to find a mate and fast reproduction rates. Examples of a disadvantage of sexual reproduction can include using resources to find a mate, while a disadvantage in asexual reproduction can be the lack of genetic variation when the environment changes or a disease is introduced. IncomingConnection from 8.MS-LS3-3(MA). Communicate through writing and in diagrams that chromosomes contain many distinct genes and that each gene holds the instructions for the production of specific proteins, which in turn affects the traits of an individual. State Assessment Boundary: Specific changes at the molecular level or mechanisms for protein synthesis are not expected in state assessment. Concept: 5-LS2-1 OutgoingConnection to 7.MS-LS2-3. Develop a model to describe that matter and energy are transferred among living and nonliving parts of an ecosystem and that both matter and energy are conserved through these processes. Clarification Statement: Cycling of matter should include the role of photosynthesis, cellular respiration, and decomposition, as well as transfer among producers, consumers (primary, secondary, and tertiary) and decomposers. Models may include food webs and food chains. State Assessment Boundary: Cycling of specific atoms (such as carbon or oxygen), or the biochemical steps of photosynthesis, cellular respiration, and decomposition are not expected in state assessment. Concept: HS-LS1-2. Develop and use a model to illustrate the key functions of animal body systems, including (a) food digestion, nutrient uptake, and transport through the body, (b) exchange of oxygen and carbon dioxide, (c) removal of wastes, and (d) regulation of body processes. Clarification Statement: Emphasis is on the primary function of the following body systems (and structures): digestive (mouth, stomach, small intestine [villi], large intestine, pancreas), respiratory (lungs [alveoli], diaphragm), circulatory (heart, veins, arteries, capillaries), excretory (kidneys, liver, skin), and nervous (neurons, brain, spinal cord). State Assessment Boundary: Chemical reactions in cells, details of particular structures (such as the structure of the neuron), or the identification of specific proteins in cells are not expected in state assessment. OutgoingConnection to HS-LS1-3. Provide evidence that homeostasis maintains internal body conditions through both body-wide feedback mechanisms and small-scale cellular processes. Clarification Statements: Feedback mechanisms include the promotion of a stimulus through positive feedback (e.g., injured tissues releasing chemicals in blood that activate platelets to facilitate blood clotting), and the inhibition of stimulus through negative feedback (e.g., insulin reducing high blood glucose to normal levels). Cellular processes include (a) passive transport and active transport of materials across the cell membrane to maintain specific concentrations of water and other nutrients in the cell and (b) the role of lysosomes in recycling wastes, macromolecules, and cell parts into monomers. State Assessment Boundary: Interactions at the molecular level (for example, how insulin is produced) are not expected in state assessment. OutgoingConnection to HS-LS1-4. Construct an explanation using evidence for why the cell cycle is necessary for the growth, maintenance, and repair of multicellular organisms. Model the major events of the cell cycle, including (a) cell growth, DNA replication, (b) separation of chromosomes (mitosis), and (c) separation of cell contents. State Assessment Boundary: Specific gene control mechanisms or specific details of each event (e.g., steps of mitosis) are not expected in state assessment. IncomingConnection from 6.MS-LS1-3. Construct an argument supported by evidence that the body systems interact to carry out essential functions of life. Clarification Statements: Emphasis is on the functions and interactions of the body systems, not specific body parts or organs. An argument should convey that different types of cells can join together to form specialized tissues, which in turn may form organs that work together as body systems. Body systems to be included are the circulatory, digestive, respiratory, excretory, muscular/skeletal, and nervous systems. Essential functions of life include obtaining food and other nutrients (water, oxygen, minerals), releasing energy from food, removing wastes, responding to stimuli, maintaining internal conditions, and, growing/developing. An example of interacting systems could include the respiratory system taking in oxygen from the environment which the circulatory system delivers to cells for cellular respiration, or the digestive system taking in nutrients which the circulatory system transports to cells around the body. State Assessment Boundaries: The mechanism of one body system independent of others or the biochemical processes involved in body systems are not expected in state assessment. Describing the function or comparing different types of cells, tissues, or organs are not expected in state assessment. Concept: HS-LS4-4. Research and communicate information about key features of viruses and bacteria to explain their ability to adapt and reproduce in a wide variety of environments. Clarification Statement: Key features include high rate of mutations and the speed of reproduction which produces many generations with high variability in a short time, allowing for rapid adaptation. State Assessment Boundary: Specific types of viral reproduction (e.g., lytic and lysogenic) are not expected in state assessment. IncomingConnection from HS-LS4-2. Construct an explanation based on evidence that Darwin's theory evolution by natural selection occurs in a population when the following conditions are met (a) more offspring are produced than can be supported by the environment, (b) there is heritable variation among individuals, and (c) some of these variations lead to differential fitness among individuals as some individuals are better able to compete for limited resources than others. Clarification Statement: Emphasis is on the overall result is an increase in the proportion of those individuals with advantageous heritable traits that are better able to survive and reproduce in the environment. Concept: HS-LS4-1. Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence, including molecular, anatomical, and developmental similarities inherited from a common ancestor (homologies), seen through fossils and documented laboratory and field observations. Clarification Statement: Examples of evidence can include the work of Margulis on endosymbiosis, examination of genomes, and analyses of vestigial or skeletal structures. IncomingConnection from 6.MS-LS4-1. Analyze and interpret evidence from the fossil record to describe organisms and their environment, extinctions and changes to life forms throughout the history of Earth. Clarification Statement: Examples of evidence include sets of fossils that indicate a specific type of environment, anatomical structures that indicate the function of an organism in the environment, and fossilized tracks that indicate behavior of organisms. State Assessment Boundary: Names of individual species, geological eras in the fossil record, or mechanisms for extinction or speciation are not expected in state assessment. IncomingConnection from ELA: SL.9-10.4 IncomingConnection from HS-LS4-2. Construct an explanation based on evidence that Darwin's theory evolution by natural selection occurs in a population when the following conditions are met (a) more offspring are produced than can be supported by the environment, (b) there is heritable variation among individuals, and (c) some of these variations lead to differential fitness among individuals as some individuals are better able to compete for limited resources than others. Clarification Statement: Emphasis is on the overall result is an increase in the proportion of those individuals with advantageous heritable traits that are better able to survive and reproduce in the environment. IncomingConnection from 6.MS-LS4-2. Construct an argument using anatomical structures to support evolutionary relationships among and between fossil organisms and modern organisms. Clarification Statement: Evolutionary relationships include (a) some organisms have similar traits with similar functions because they were inherited from a common ancestor, (b) some organisms have similar traits that serve similar functions because they live in similar environments, and (c) some organisms have traits inherited from common ancestors that no longer serve their original function because their environments are different than their ancestors' environments. Concept: HS-LS1-1. Construct a model of transcription and translation to explain the roles of DNA and RNA that code for proteins that regulate and carry out essential functions of life. Clarification Statements: Proteins that regulate and carry out essential functions of life include enzymes (which speed up chemical reactions), structural proteins (which provide structure and enable movement), and hormones and receptors (which send and receive signals). The model should show the double-stranded structure of DNA, including genes as part of DNA’s transcribed strand, with complementary bases on the non-transcribed strand. State Assessment Boundaries: Specific names of proteins or specific steps of transcriptionand translation are not expected in state assessment. Cell structures included in transcription and translation will be limited to nucleus, nuclear membrane, and ribosomes for state assessment. OutgoingConnection to HS-LS3-1. Develop and use a model to show how DNA in the form of chromosomes is passed from parents to offspring through the processes of meiosis and fertilization in sexual reproduction. Clarification Statement: The model should demonstrate that an individual’s characteristics (phenotype) result, in part, from interactions among the various proteins expressed by one’s genes (genotype). State Assessment Boundary: Identification of specific phases of meiosis or the biochemical mechanisms involved are not expected in state assessment. OutgoingConnection to HS-LS3-3. Apply concepts of probability to represent possible genotype and phenotype combinations in offspring caused by different types of Mendelian inheritance patterns. Clarification Statements: Representations can include Punnett squares, diagrams, pedigree charts, and simulations. Inheritance patterns include dominant-recessive, codominance, incomplete dominance, and sex-linked. IncomingConnection from HS-LS1-6. Construct an explanation based on evidence that organic molecules are primarily composed of six elements, where carbon, hydrogen, and oxygen atoms may combine with nitrogen, sulfur, and phosphorus to form monomers that can further combine to form large carbon-based macromolecules. Clarification Statements: Monomers include amino acids, mono- and disaccharides, nucleotides, and fatty acids. Organic macromolecules include proteins, carbohydrates (polysaccharides), nucleic acids, and lipids. State Assessment Boundary: Details of specific chemical reactions or identification of specific macromolecule structures are not expected in state assessment. IncomingConnection from 8.MS-LS3-1. Develop and use a model to describe that structural changes to genes (mutations) may or may not result in changes to proteins, and if there are changes to proteins there may be harmful, beneficial, or neutral changes to traits. Clarification Statements: An example of a beneficial change to the organism may be a strain of bacteria becoming resistant to an antibiotic. A harmful change could be the development of cancer; a neutral change may change the hair color of an organism with no direct consequence. State Assessment Boundary: Specific changes at the molecular level (e.g., amino acid sequence change), mechanisms for protein synthesis, or specific types of mutations are not expected in state assessment. Concept: ELA: WHST.9-10.1 OutgoingConnection to HS-LS2-6. Analyze data to show ecosystems tend to maintain relatively consistent numbers and types of organisms even when small changes in conditions occur but that extreme fluctuations in conditions may result in a new ecosystem. Construct an argument supported by evidence that ecosystems with greater biodiversity tend to have greater resistance and to change and resilience. Clarification Statement: Examples of changes in ecosystem conditions could include modest biological or physical changes, such as moderate hunting or a seasonal flood; and extreme changes, such as volcanic eruption, fires, the decline or loss of a keystone species, climate changes, ocean acidification, or sea level rise. Concept: 4-LS1-1 OutgoingConnection to 6.MS-LS1-2. Develop and use a model to describe how parts of cells contribute to the cellular functions of obtaining food, water, and other nutrients from its environment, disposing of waste, and producing energy for cellular processes. Clarification Statement: Parts of plants and animal cells include (a) the nucleus which, contains a cell's genetic material and regulates its activities (b) chloroplasts, which produce necessary food (sugar) and oxygen through photosynthesis (in plants) (c) mitochondria, which release energy from food through cellular respiration (d) vacuoles, which store materials, including water, nutrients, and waste (e) the cell membrane, which is a selective barrier that enables nutrients to enter the cell and wastes to be expelled, and (f) the cell wall, which provides structural support (in plants). State Assessment Boundary: Specific biochemical steps or chemical processes, the role of ATP, active transport processes involving the cell membrane, or identifying or comparing different types of cells are not expected in state assessment. Concept: 5-PS3-1 OutgoingConnection to 7.MS-LS2-3. Develop a model to describe that matter and energy are transferred among living and nonliving parts of an ecosystem and that both matter and energy are conserved through these processes. Clarification Statement: Cycling of matter should include the role of photosynthesis, cellular respiration, and decomposition, as well as transfer among producers, consumers (primary, secondary, and tertiary) and decomposers. Models may include food webs and food chains. State Assessment Boundary: Cycling of specific atoms (such as carbon or oxygen), or the biochemical steps of photosynthesis, cellular respiration, and decomposition are not expected in state assessment. Concept: 3-LS4-3 OutgoingConnection to 8.MS-LS1-5. Construct an argument based on evidence for how environmental and genetic factors influence the growth of organisms. Clarification Statements: Examples of environmental conditions could include availability of food, light, space, and water. Examples of genetic factors could include the genes responsible for size differences in different breeds of dogs, such as great danes and chihuahuas. Examples of environmental factors could include drought decreasing plant growth, fertilizer increasing plant growth, and fish growing larger in large ponds than they do in small ponds. Examples of both genetic and environmental factors could include different varieties of plants growing at different rates in different conditions. State Assessment Boundary: Methods of reproduction, genetic mechanisms, gene regulation, biochemical processes, or natural selection are not expected in state assessment. Concept: ELA: WHST.6-8.1 OutgoingConnection to 8.MS-LS1-5. Construct an argument based on evidence for how environmental and genetic factors influence the growth of organisms. Clarification Statements: Examples of environmental conditions could include availability of food, light, space, and water. Examples of genetic factors could include the genes responsible for size differences in different breeds of dogs, such as great danes and chihuahuas. Examples of environmental factors could include drought decreasing plant growth, fertilizer increasing plant growth, and fish growing larger in large ponds than they do in small ponds. Examples of both genetic and environmental factors could include different varieties of plants growing at different rates in different conditions. State Assessment Boundary: Methods of reproduction, genetic mechanisms, gene regulation, biochemical processes, or natural selection are not expected in state assessment. Concept: ELA: SL.6.2 OutgoingConnection to 6.MS-LS4-1. Analyze and interpret evidence from the fossil record to describe organisms and their environment, extinctions and changes to life forms throughout the history of Earth. Clarification Statement: Examples of evidence include sets of fossils that indicate a specific type of environment, anatomical structures that indicate the function of an organism in the environment, and fossilized tracks that indicate behavior of organisms. State Assessment Boundary: Names of individual species, geological eras in the fossil record, or mechanisms for extinction or speciation are not expected in state assessment. Concept: 2-LS2-3 OutgoingConnection to 7.MS-LS2-2. Describe how relationships among and between organisms in an ecosystem can be competitive, predatory, parasitic, and mutually beneficial and that these interactions are found across multiple ecosystems. Clarification Statement: Emphasis is on describing consistent patterns of interactions in different ecosystems in terms of relationships among and between organisms. Concept: 3-LS4-4 OutgoingConnection to 6.MS-LS4-1. Analyze and interpret evidence from the fossil record to describe organisms and their environment, extinctions and changes to life forms throughout the history of Earth. Clarification Statement: Examples of evidence include sets of fossils that indicate a specific type of environment, anatomical structures that indicate the function of an organism in the environment, and fossilized tracks that indicate behavior of organisms. State Assessment Boundary: Names of individual species, geological eras in the fossil record, or mechanisms for extinction or speciation are not expected in state assessment. Concept: HS-LS3-3. Apply concepts of probability to represent possible genotype and phenotype combinations in offspring caused by different types of Mendelian inheritance patterns. Clarification Statements: Representations can include Punnett squares, diagrams, pedigree charts, and simulations. Inheritance patterns include dominant-recessive, codominance, incomplete dominance, and sex-linked. OutgoingConnection to HS-LS4-2. Construct an explanation based on evidence that Darwin's theory evolution by natural selection occurs in a population when the following conditions are met (a) more offspring are produced than can be supported by the environment, (b) there is heritable variation among individuals, and (c) some of these variations lead to differential fitness among individuals as some individuals are better able to compete for limited resources than others. Clarification Statement: Emphasis is on the overall result is an increase in the proportion of those individuals with advantageous heritable traits that are better able to survive and reproduce in the environment. IncomingConnection from HS-LS1-1. Construct a model of transcription and translation to explain the roles of DNA and RNA that code for proteins that regulate and carry out essential functions of life. Clarification Statements: Proteins that regulate and carry out essential functions of life include enzymes (which speed up chemical reactions), structural proteins (which provide structure and enable movement), and hormones and receptors (which send and receive signals). The model should show the double-stranded structure of DNA, including genes as part of DNA’s transcribed strand, with complementary bases on the non-transcribed strand. State Assessment Boundaries: Specific names of proteins or specific steps of transcriptionand translation are not expected in state assessment. Cell structures included in transcription and translation will be limited to nucleus, nuclear membrane, and ribosomes for state assessment. IncomingConnection from 8.MS-LS3-3(MA). Communicate through writing and in diagrams that chromosomes contain many distinct genes and that each gene holds the instructions for the production of specific proteins, which in turn affects the traits of an individual. State Assessment Boundary: Specific changes at the molecular level or mechanisms for protein synthesis are not expected in state assessment. IncomingConnection from MATH: S-IC.1,2 IncomingConnection from 8.MS-LS1-5. Construct an argument based on evidence for how environmental and genetic factors influence the growth of organisms. Clarification Statements: Examples of environmental conditions could include availability of food, light, space, and water. Examples of genetic factors could include the genes responsible for size differences in different breeds of dogs, such as great danes and chihuahuas. Examples of environmental factors could include drought decreasing plant growth, fertilizer increasing plant growth, and fish growing larger in large ponds than they do in small ponds. Examples of both genetic and environmental factors could include different varieties of plants growing at different rates in different conditions. State Assessment Boundary: Methods of reproduction, genetic mechanisms, gene regulation, biochemical processes, or natural selection are not expected in state assessment. Concept: 7.MS-LS2-4. Analyze data to provide evidence that disruptions (natural or human-made) to any physical or biological component of an ecosystem can lead to shifts in all its populations. Clarification Statement: Focus should be on ecosystem characteristics varying over time, including disruptions such as hurricanes, floods, wildfires, oil spills, and construction. OutgoingConnection to HS-LS4-2. Construct an explanation based on evidence that Darwin's theory evolution by natural selection occurs in a population when the following conditions are met (a) more offspring are produced than can be supported by the environment, (b) there is heritable variation among individuals, and (c) some of these variations lead to differential fitness among individuals as some individuals are better able to compete for limited resources than others. Clarification Statement: Emphasis is on the overall result is an increase in the proportion of those individuals with advantageous heritable traits that are better able to survive and reproduce in the environment. OutgoingConnection to HS-LS2-2. Use mathematical representations to support explanations that biotic and abiotic factors affect biodiversity, including genetic diversity within a population and species diversity within an ecosystem. Clarification Statements: Examples of biotic factors could include relationships among individuals (feeding relationships, symbiosis, competition) and disease. Examples of abiotic factors could include climate and weather conditions, natural disasters, and availability of resources. Examples of mathematical representations include finding the average, determining trends, and using graphical comparisons of multiple sets of data. IncomingConnection from 7.MS-LS2-1. Analyze and interpret data to provide evidence for the effects of periods of abundant and scarce resources on the growth of organisms and the size of populations in an ecosystem. IncomingConnection from 3-LS4-3 Concept: HS-LS4-5. Evaluate the merits and limitations of a model that demonstrates how changes in environmental conditions may result in the emergence of new species over generations and/or the extinction of other species, and that these processes may occur at different rates depending on the conditions. Clarification Statement: Examples of the processes occurring at different rates include gradualism versus punctuated equilibrium and background extinction versus mass extinction). IncomingConnection from HS-LS4-2. Construct an explanation based on evidence that Darwin's theory evolution by natural selection occurs in a population when the following conditions are met (a) more offspring are produced than can be supported by the environment, (b) there is heritable variation among individuals, and (c) some of these variations lead to differential fitness among individuals as some individuals are better able to compete for limited resources than others. Clarification Statement: Emphasis is on the overall result is an increase in the proportion of those individuals with advantageous heritable traits that are better able to survive and reproduce in the environment. Concept: 6.MS-LS1-3. Construct an argument supported by evidence that the body systems interact to carry out essential functions of life. Clarification Statements: Emphasis is on the functions and interactions of the body systems, not specific body parts or organs. An argument should convey that different types of cells can join together to form specialized tissues, which in turn may form organs that work together as body systems. Body systems to be included are the circulatory, digestive, respiratory, excretory, muscular/skeletal, and nervous systems. Essential functions of life include obtaining food and other nutrients (water, oxygen, minerals), releasing energy from food, removing wastes, responding to stimuli, maintaining internal conditions, and, growing/developing. An example of interacting systems could include the respiratory system taking in oxygen from the environment which the circulatory system delivers to cells for cellular respiration, or the digestive system taking in nutrients which the circulatory system transports to cells around the body. State Assessment Boundaries: The mechanism of one body system independent of others or the biochemical processes involved in body systems are not expected in state assessment. Describing the function or comparing different types of cells, tissues, or organs are not expected in state assessment. OutgoingConnection to HS-LS1-2. Develop and use a model to illustrate the key functions of animal body systems, including (a) food digestion, nutrient uptake, and transport through the body, (b) exchange of oxygen and carbon dioxide, (c) removal of wastes, and (d) regulation of body processes. Clarification Statement: Emphasis is on the primary function of the following body systems (and structures): digestive (mouth, stomach, small intestine [villi], large intestine, pancreas), respiratory (lungs [alveoli], diaphragm), circulatory (heart, veins, arteries, capillaries), excretory (kidneys, liver, skin), and nervous (neurons, brain, spinal cord). State Assessment Boundary: Chemical reactions in cells, details of particular structures (such as the structure of the neuron), or the identification of specific proteins in cells are not expected in state assessment. OutgoingConnection to 8.MS-LS1-7. Use informational text to describe that food molecules, including carbohydrates, proteins, and fats, are broken down and rearranged through chemical reactions forming new molecules that support cell growth and/or release of energy. State Assessment Boundary: Specific details of the chemical reaction for cellular respiration, biochemical steps of breaking down food, or the resulting molecules (e.g., carbohydrates are broken down into monosaccharides) are not expected in state assessment. IncomingConnection from 6.MS-LS1-2. Develop and use a model to describe how parts of cells contribute to the cellular functions of obtaining food, water, and other nutrients from its environment, disposing of waste, and producing energy for cellular processes. Clarification Statement: Parts of plants and animal cells include (a) the nucleus which, contains a cell's genetic material and regulates its activities (b) chloroplasts, which produce necessary food (sugar) and oxygen through photosynthesis (in plants) (c) mitochondria, which release energy from food through cellular respiration (d) vacuoles, which store materials, including water, nutrients, and waste (e) the cell membrane, which is a selective barrier that enables nutrients to enter the cell and wastes to be expelled, and (f) the cell wall, which provides structural support (in plants). State Assessment Boundary: Specific biochemical steps or chemical processes, the role of ATP, active transport processes involving the cell membrane, or identifying or comparing different types of cells are not expected in state assessment. IncomingConnection from ELA: WHST.6-8.1 IncomingConnection from 4-LS1-1 Concept: 3-LS4-2 OutgoingConnection to 7.MS-LS1-4. Construct an explanation based on evidence for how characteristic animal behaviors and specialized plant structures increase the probability of successful reproduction of animals and plants. Clarification Statements: Examples of animal behaviors that affect the probability of animal reproduction could include nest building to protect young from cold, herding of animals to protect young from predators, and vocalization of animals and colorful plumage to attract mates for breeding. Examples of animal behaviors that affect the probability of plant reproduction could include (a) transferring pollen or seeds and (b) creating conditions for seed germination and growth. Examples of plant structures that affect the probability of plant reproduction could include bright flowers attracting butterflies that transfer pollen, flower nectar and odors that attract insects that transfer pollen, and hard shells on nuts that squirrels bury. State Assessment Boundary: Natural selection is not expected in state assessment. Concept: 6.MS-LS1-1. Provide evidence that all organisms (unicellular and multicellular) are made of cells. Clarification Statement: Evidence can be drawn from multiple types of organisms, such as plants, animals and bacteria. OutgoingConnection to 6.MS-LS1-2. Develop and use a model to describe how parts of cells contribute to the cellular functions of obtaining food, water, and other nutrients from its environment, disposing of waste, and producing energy for cellular processes. Clarification Statement: Parts of plants and animal cells include (a) the nucleus which, contains a cell's genetic material and regulates its activities (b) chloroplasts, which produce necessary food (sugar) and oxygen through photosynthesis (in plants) (c) mitochondria, which release energy from food through cellular respiration (d) vacuoles, which store materials, including water, nutrients, and waste (e) the cell membrane, which is a selective barrier that enables nutrients to enter the cell and wastes to be expelled, and (f) the cell wall, which provides structural support (in plants). State Assessment Boundary: Specific biochemical steps or chemical processes, the role of ATP, active transport processes involving the cell membrane, or identifying or comparing different types of cells are not expected in state assessment. Concept: 7.MS-LS2-1. Analyze and interpret data to provide evidence for the effects of periods of abundant and scarce resources on the growth of organisms and the size of populations in an ecosystem. OutgoingConnection to 7.MS-LS2-6(MA). Explain how changes to the biodiversity of an ecosystem—the variety of species found in the ecosystem—may limit the availability of resources humans use. Clarification Statement: Examples of resources can include food, energy, medicine, and clean water. OutgoingConnection to HS-LS2-1. Analyze data sets to support explanations that biotic and abiotic factors affect ecosystem carrying capacity. Clarification Statements: Examples of biotic factors could include relationships among individuals (e.g., feeding relationships, symbioses, competition) and disease. Examples of abiotic factors could include climate and weather conditions, natural disasters, and availability of resources. Example data sets can be derived from simulations or historical data. OutgoingConnection to 7.MS-LS2-4. Analyze data to provide evidence that disruptions (natural or human-made) to any physical or biological component of an ecosystem can lead to shifts in all its populations. Clarification Statement: Focus should be on ecosystem characteristics varying over time, including disruptions such as hurricanes, floods, wildfires, oil spills, and construction. IncomingConnection from Math: 6.RP.1 IncomingConnection from 7.MS-LS2-2. Describe how relationships among and between organisms in an ecosystem can be competitive, predatory, parasitic, and mutually beneficial and that these interactions are found across multiple ecosystems. Clarification Statement: Emphasis is on describing consistent patterns of interactions in different ecosystems in terms of relationships among and between organisms. IncomingConnection from 5-LS2-1 IncomingConnection from 5-PS3-1 IncomingConnection from 3-LS4-4 Concept: 8.MS-LS4-5. Synthesize and communicate information about artificial selection, or the ways in which humans have changed the inheritance of desired traits in organisms. Clarification Statement: Emphasis is on the influence of humans on genetic outcomes in artificial selection (such as genetic modification, animal husbandry, and gene therapy). IncomingConnection from 8.MS-LS4-4. Use a model to describe the process of natural selection, in which genetic variations of some traits in a population increase some individuals’ likelihood of surviving and reproducing in a changing environment. Provide evidence that natural selection occurs over many generations. Clarification Statement: The model should include simple probability statements and proportional reasoning. Examples of evidence can include Darwin's finches, necks of giraffes, and peppered moths. State Assessment Boundary: Specific conditions that lead to natural selection are not expected in state assessment. IncomingConnection from 3-LS3-1 IncomingConnection from ELA: SL.6.2 Concept: 8.MS-LS4-4. Use a model to describe the process of natural selection, in which genetic variations of some traits in a population increase some individuals’ likelihood of surviving and reproducing in a changing environment. Provide evidence that natural selection occurs over many generations. Clarification Statement: The model should include simple probability statements and proportional reasoning. Examples of evidence can include Darwin's finches, necks of giraffes, and peppered moths. State Assessment Boundary: Specific conditions that lead to natural selection are not expected in state assessment. OutgoingConnection to HS-LS4-2. Construct an explanation based on evidence that Darwin's theory evolution by natural selection occurs in a population when the following conditions are met (a) more offspring are produced than can be supported by the environment, (b) there is heritable variation among individuals, and (c) some of these variations lead to differential fitness among individuals as some individuals are better able to compete for limited resources than others. Clarification Statement: Emphasis is on the overall result is an increase in the proportion of those individuals with advantageous heritable traits that are better able to survive and reproduce in the environment. OutgoingConnection to 8.MS-LS4-5. Synthesize and communicate information about artificial selection, or the ways in which humans have changed the inheritance of desired traits in organisms. Clarification Statement: Emphasis is on the influence of humans on genetic outcomes in artificial selection (such as genetic modification, animal husbandry, and gene therapy). IncomingConnection from 3-LS4-2 IncomingConnection from 7.MS-LS1-4. Construct an explanation based on evidence for how characteristic animal behaviors and specialized plant structures increase the probability of successful reproduction of animals and plants. Clarification Statements: Examples of animal behaviors that affect the probability of animal reproduction could include nest building to protect young from cold, herding of animals to protect young from predators, and vocalization of animals and colorful plumage to attract mates for breeding. Examples of animal behaviors that affect the probability of plant reproduction could include (a) transferring pollen or seeds and (b) creating conditions for seed germination and growth. Examples of plant structures that affect the probability of plant reproduction could include bright flowers attracting butterflies that transfer pollen, flower nectar and odors that attract insects that transfer pollen, and hard shells on nuts that squirrels bury. State Assessment Boundary: Natural selection is not expected in state assessment. IncomingConnection from 3-LS4-3 IncomingConnection from 8.MS-LS3-1. Develop and use a model to describe that structural changes to genes (mutations) may or may not result in changes to proteins, and if there are changes to proteins there may be harmful, beneficial, or neutral changes to traits. Clarification Statements: An example of a beneficial change to the organism may be a strain of bacteria becoming resistant to an antibiotic. A harmful change could be the development of cancer; a neutral change may change the hair color of an organism with no direct consequence. State Assessment Boundary: Specific changes at the molecular level (e.g., amino acid sequence change), mechanisms for protein synthesis, or specific types of mutations are not expected in state assessment. Concept: 5-LS1-1 OutgoingConnection to 6.MS-LS1-2. Develop and use a model to describe how parts of cells contribute to the cellular functions of obtaining food, water, and other nutrients from its environment, disposing of waste, and producing energy for cellular processes. Clarification Statement: Parts of plants and animal cells include (a) the nucleus which, contains a cell's genetic material and regulates its activities (b) chloroplasts, which produce necessary food (sugar) and oxygen through photosynthesis (in plants) (c) mitochondria, which release energy from food through cellular respiration (d) vacuoles, which store materials, including water, nutrients, and waste (e) the cell membrane, which is a selective barrier that enables nutrients to enter the cell and wastes to be expelled, and (f) the cell wall, which provides structural support (in plants). State Assessment Boundary: Specific biochemical steps or chemical processes, the role of ATP, active transport processes involving the cell membrane, or identifying or comparing different types of cells are not expected in state assessment. Concept: 3-LS3-1 OutgoingConnection to 8.MS-LS3-3(MA). Communicate through writing and in diagrams that chromosomes contain many distinct genes and that each gene holds the instructions for the production of specific proteins, which in turn affects the traits of an individual. State Assessment Boundary: Specific changes at the molecular level or mechanisms for protein synthesis are not expected in state assessment. Concept: 8.MS-LS3-3(MA). Communicate through writing and in diagrams that chromosomes contain many distinct genes and that each gene holds the instructions for the production of specific proteins, which in turn affects the traits of an individual. State Assessment Boundary: Specific changes at the molecular level or mechanisms for protein synthesis are not expected in state assessment. OutgoingConnection to 8.MS-LS1-5. Construct an argument based on evidence for how environmental and genetic factors influence the growth of organisms. Clarification Statements: Examples of environmental conditions could include availability of food, light, space, and water. Examples of genetic factors could include the genes responsible for size differences in different breeds of dogs, such as great danes and chihuahuas. Examples of environmental factors could include drought decreasing plant growth, fertilizer increasing plant growth, and fish growing larger in large ponds than they do in small ponds. Examples of both genetic and environmental factors could include different varieties of plants growing at different rates in different conditions. State Assessment Boundary: Methods of reproduction, genetic mechanisms, gene regulation, biochemical processes, or natural selection are not expected in state assessment. OutgoingConnection to 8.MS-LS3-4(MA). Develop and use a model to show that sexually reproducing organisms have two of each chromosome in their cell nuclei, and hence two variants (alleles) of each gene that can be the same or different from each other,with one random assortment of each chromosome passed down to offspring from both parents. Clarification Statement: Examples of models can include Punnett squares, diagrams (e.g., simple pedigrees), and simulations. State Assessment Boundary: State assessment will limit inheritance patterns to dominant-recessive alleles only. OutgoingConnection to 8.MS-LS3-1. Develop and use a model to describe that structural changes to genes (mutations) may or may not result in changes to proteins, and if there are changes to proteins there may be harmful, beneficial, or neutral changes to traits. Clarification Statements: An example of a beneficial change to the organism may be a strain of bacteria becoming resistant to an antibiotic. A harmful change could be the development of cancer; a neutral change may change the hair color of an organism with no direct consequence. State Assessment Boundary: Specific changes at the molecular level (e.g., amino acid sequence change), mechanisms for protein synthesis, or specific types of mutations are not expected in state assessment. OutgoingConnection to HS-LS3-3. Apply concepts of probability to represent possible genotype and phenotype combinations in offspring caused by different types of Mendelian inheritance patterns. Clarification Statements: Representations can include Punnett squares, diagrams, pedigree charts, and simulations. Inheritance patterns include dominant-recessive, codominance, incomplete dominance, and sex-linked. IncomingConnection from 3-LS3-1 IncomingConnection from ELA: WHST.6-8.2 Concept: HS-LS2-1. Analyze data sets to support explanations that biotic and abiotic factors affect ecosystem carrying capacity. Clarification Statements: Examples of biotic factors could include relationships among individuals (e.g., feeding relationships, symbioses, competition) and disease. Examples of abiotic factors could include climate and weather conditions, natural disasters, and availability of resources. Example data sets can be derived from simulations or historical data. IncomingConnection from 7.MS-LS2-1. Analyze and interpret data to provide evidence for the effects of periods of abundant and scarce resources on the growth of organisms and the size of populations in an ecosystem. Concept: Math: 6.RP.1 OutgoingConnection to 7.MS-LS2-1. Analyze and interpret data to provide evidence for the effects of periods of abundant and scarce resources on the growth of organisms and the size of populations in an ecosystem. Concept: 3-LS3-2 OutgoingConnection to 8.MS-LS1-5. Construct an argument based on evidence for how environmental and genetic factors influence the growth of organisms. Clarification Statements: Examples of environmental conditions could include availability of food, light, space, and water. Examples of genetic factors could include the genes responsible for size differences in different breeds of dogs, such as great danes and chihuahuas. Examples of environmental factors could include drought decreasing plant growth, fertilizer increasing plant growth, and fish growing larger in large ponds than they do in small ponds. Examples of both genetic and environmental factors could include different varieties of plants growing at different rates in different conditions. State Assessment Boundary: Methods of reproduction, genetic mechanisms, gene regulation, biochemical processes, or natural selection are not expected in state assessment. Concept: 6.MS-LS1-2. Develop and use a model to describe how parts of cells contribute to the cellular functions of obtaining food, water, and other nutrients from its environment, disposing of waste, and producing energy for cellular processes. Clarification Statement: Parts of plants and animal cells include (a) the nucleus which, contains a cell's genetic material and regulates its activities (b) chloroplasts, which produce necessary food (sugar) and oxygen through photosynthesis (in plants) (c) mitochondria, which release energy from food through cellular respiration (d) vacuoles, which store materials, including water, nutrients, and waste (e) the cell membrane, which is a selective barrier that enables nutrients to enter the cell and wastes to be expelled, and (f) the cell wall, which provides structural support (in plants). State Assessment Boundary: Specific biochemical steps or chemical processes, the role of ATP, active transport processes involving the cell membrane, or identifying or comparing different types of cells are not expected in state assessment. OutgoingConnection to 6.MS-LS1-3. Construct an argument supported by evidence that the body systems interact to carry out essential functions of life. Clarification Statements: Emphasis is on the functions and interactions of the body systems, not specific body parts or organs. An argument should convey that different types of cells can join together to form specialized tissues, which in turn may form organs that work together as body systems. Body systems to be included are the circulatory, digestive, respiratory, excretory, muscular/skeletal, and nervous systems. Essential functions of life include obtaining food and other nutrients (water, oxygen, minerals), releasing energy from food, removing wastes, responding to stimuli, maintaining internal conditions, and, growing/developing. An example of interacting systems could include the respiratory system taking in oxygen from the environment which the circulatory system delivers to cells for cellular respiration, or the digestive system taking in nutrients which the circulatory system transports to cells around the body. State Assessment Boundaries: The mechanism of one body system independent of others or the biochemical processes involved in body systems are not expected in state assessment. Describing the function or comparing different types of cells, tissues, or organs are not expected in state assessment. OutgoingConnection to HS-LS1-4. Construct an explanation using evidence for why the cell cycle is necessary for the growth, maintenance, and repair of multicellular organisms. Model the major events of the cell cycle, including (a) cell growth, DNA replication, (b) separation of chromosomes (mitosis), and (c) separation of cell contents. State Assessment Boundary: Specific gene control mechanisms or specific details of each event (e.g., steps of mitosis) are not expected in state assessment. OutgoingConnection to HS-LS1-6. Construct an explanation based on evidence that organic molecules are primarily composed of six elements, where carbon, hydrogen, and oxygen atoms may combine with nitrogen, sulfur, and phosphorus to form monomers that can further combine to form large carbon-based macromolecules. Clarification Statements: Monomers include amino acids, mono- and disaccharides, nucleotides, and fatty acids. Organic macromolecules include proteins, carbohydrates (polysaccharides), nucleic acids, and lipids. State Assessment Boundary: Details of specific chemical reactions or identification of specific macromolecule structures are not expected in state assessment. OutgoingConnection to HS-LS1-5. Use a model to illustrate how photosynthesis uses light energy to transform water and carbon dioxide into oxygen and chemical energy stored in the bonds of sugar and other carbohydrates. Clarification Statements: Emphasis is on illustrating inputs and outputs of matter (including ATP) and the transfer and transformation of energy in photosynthesis by plants and other photosynthesizing organisms. Examples of models could include diagrams, chemical equations, and conceptual models. State Assessment Boundary: Specific biochemical steps of light reactions or the Calvin Cycle, or chemical structures of molecules are not expected in state assessment. OutgoingConnection to 7.MS-LS2-3. Develop a model to describe that matter and energy are transferred among living and nonliving parts of an ecosystem and that both matter and energy are conserved through these processes. Clarification Statement: Cycling of matter should include the role of photosynthesis, cellular respiration, and decomposition, as well as transfer among producers, consumers (primary, secondary, and tertiary) and decomposers. Models may include food webs and food chains. State Assessment Boundary: Cycling of specific atoms (such as carbon or oxygen), or the biochemical steps of photosynthesis, cellular respiration, and decomposition are not expected in state assessment. IncomingConnection from 4-LS1-1 IncomingConnection from 6.MS-LS1-1. Provide evidence that all organisms (unicellular and multicellular) are made of cells. Clarification Statement: Evidence can be drawn from multiple types of organisms, such as plants, animals and bacteria. IncomingConnection from 5-LS1-1 Concept: HS-LS1-6. Construct an explanation based on evidence that organic molecules are primarily composed of six elements, where carbon, hydrogen, and oxygen atoms may combine with nitrogen, sulfur, and phosphorus to form monomers that can further combine to form large carbon-based macromolecules. Clarification Statements: Monomers include amino acids, mono- and disaccharides, nucleotides, and fatty acids. Organic macromolecules include proteins, carbohydrates (polysaccharides), nucleic acids, and lipids. State Assessment Boundary: Details of specific chemical reactions or identification of specific macromolecule structures are not expected in state assessment. OutgoingConnection to HS-LS2-4. Use a mathematical model to describe the transfer of energy from one trophic level to another. Explain how the inefficiency of energy transfer between trophic levels affects the relative number of organisms that can be supported at each trophic level and necessitates a constant input of energy from sunlight or inorganic compounds from the environment. Clarification Statement: The model should illustrate the “10% rule” of energy transfer and show approximate amounts of available energy at each trophic level in an ecosystem (up to five trophic levels). OutgoingConnection to HS-LS1-7. Use a model to illustrate that aerobic cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and new bonds form, resulting in new compounds and a net transfer of energy. Clarification Statements: Emphasis is on the conceptual understanding of the inputs and outputs of the process of aerobic cellular respiration. Examples of models could include diagrams, chemical equations, and conceptual models. The model should include the role of ATP for energy transfer in this process. Food molecules include sugars (carbohydrates), fats (lipids), and proteins. State Assessment Boundary: Identification of the steps or specific processes involved in cellular respiration are not expected in state assessment. OutgoingConnection to HS-LS1-1. Construct a model of transcription and translation to explain the roles of DNA and RNA that code for proteins that regulate and carry out essential functions of life. Clarification Statements: Proteins that regulate and carry out essential functions of life include enzymes (which speed up chemical reactions), structural proteins (which provide structure and enable movement), and hormones and receptors (which send and receive signals). The model should show the double-stranded structure of DNA, including genes as part of DNA’s transcribed strand, with complementary bases on the non-transcribed strand. State Assessment Boundaries: Specific names of proteins or specific steps of transcriptionand translation are not expected in state assessment. Cell structures included in transcription and translation will be limited to nucleus, nuclear membrane, and ribosomes for state assessment. IncomingConnection from 6.MS-LS1-2. Develop and use a model to describe how parts of cells contribute to the cellular functions of obtaining food, water, and other nutrients from its environment, disposing of waste, and producing energy for cellular processes. Clarification Statement: Parts of plants and animal cells include (a) the nucleus which, contains a cell's genetic material and regulates its activities (b) chloroplasts, which produce necessary food (sugar) and oxygen through photosynthesis (in plants) (c) mitochondria, which release energy from food through cellular respiration (d) vacuoles, which store materials, including water, nutrients, and waste (e) the cell membrane, which is a selective barrier that enables nutrients to enter the cell and wastes to be expelled, and (f) the cell wall, which provides structural support (in plants). State Assessment Boundary: Specific biochemical steps or chemical processes, the role of ATP, active transport processes involving the cell membrane, or identifying or comparing different types of cells are not expected in state assessment. IncomingConnection from 8.MS-LS1-7. Use informational text to describe that food molecules, including carbohydrates, proteins, and fats, are broken down and rearranged through chemical reactions forming new molecules that support cell growth and/or release of energy. State Assessment Boundary: Specific details of the chemical reaction for cellular respiration, biochemical steps of breaking down food, or the resulting molecules (e.g., carbohydrates are broken down into monosaccharides) are not expected in state assessment. Concept: 7.MS-LS2-5. Evaluate competing design solutions for protecting an ecosystem. Discuss benefits and limitations of each design.* Clarification Statements: Examples of design solutions could include water, land, and species protection and the prevention of soil erosion. Examples of design solution constraints could include scientific, economic, and social considerations. OutgoingConnection to HS-LS2-7. Analyze direct and indirect effects of human activities on biodiversity and ecosystem health, specifically habitat fragmentation, introduction of non-native or invasive species, overharvesting, pollution, and climate change. Evaluate and refine a solution for reducing the impacts of human activities on biodiversity and ecosystem health.* Clarification Statement: Examples of solutions can include captive breeding programs, habitat restoration, pollution mitigation, energy conservation, and ecotourism. OutgoingConnection to 7.MS-ESS3-4 IncomingConnection from ELA: W.7.9 IncomingConnection from 7.MS-ETS1-2 IncomingConnection from 7.MS-LS2-6(MA). Explain how changes to the biodiversity of an ecosystem—the variety of species found in the ecosystem—may limit the availability of resources humans use. Clarification Statement: Examples of resources can include food, energy, medicine, and clean water. Concept: HS-LS4-2. Construct an explanation based on evidence that Darwin's theory evolution by natural selection occurs in a population when the following conditions are met (a) more offspring are produced than can be supported by the environment, (b) there is heritable variation among individuals, and (c) some of these variations lead to differential fitness among individuals as some individuals are better able to compete for limited resources than others. Clarification Statement: Emphasis is on the overall result is an increase in the proportion of those individuals with advantageous heritable traits that are better able to survive and reproduce in the environment. OutgoingConnection to HS-LS4-5. Evaluate the merits and limitations of a model that demonstrates how changes in environmental conditions may result in the emergence of new species over generations and/or the extinction of other species, and that these processes may occur at different rates depending on the conditions. Clarification Statement: Examples of the processes occurring at different rates include gradualism versus punctuated equilibrium and background extinction versus mass extinction). OutgoingConnection to HS-LS4-1. Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence, including molecular, anatomical, and developmental similarities inherited from a common ancestor (homologies), seen through fossils and documented laboratory and field observations. Clarification Statement: Examples of evidence can include the work of Margulis on endosymbiosis, examination of genomes, and analyses of vestigial or skeletal structures. OutgoingConnection to HS-LS4-4. Research and communicate information about key features of viruses and bacteria to explain their ability to adapt and reproduce in a wide variety of environments. Clarification Statement: Key features include high rate of mutations and the speed of reproduction which produces many generations with high variability in a short time, allowing for rapid adaptation. State Assessment Boundary: Specific types of viral reproduction (e.g., lytic and lysogenic) are not expected in state assessment. IncomingConnection from HS-LS3-3. Apply concepts of probability to represent possible genotype and phenotype combinations in offspring caused by different types of Mendelian inheritance patterns. Clarification Statements: Representations can include Punnett squares, diagrams, pedigree charts, and simulations. Inheritance patterns include dominant-recessive, codominance, incomplete dominance, and sex-linked. IncomingConnection from 7.MS-LS2-4. Analyze data to provide evidence that disruptions (natural or human-made) to any physical or biological component of an ecosystem can lead to shifts in all its populations. Clarification Statement: Focus should be on ecosystem characteristics varying over time, including disruptions such as hurricanes, floods, wildfires, oil spills, and construction. IncomingConnection from 8.MS-LS4-4. Use a model to describe the process of natural selection, in which genetic variations of some traits in a population increase some individuals’ likelihood of surviving and reproducing in a changing environment. Provide evidence that natural selection occurs over many generations. Clarification Statement: The model should include simple probability statements and proportional reasoning. Examples of evidence can include Darwin's finches, necks of giraffes, and peppered moths. State Assessment Boundary: Specific conditions that lead to natural selection are not expected in state assessment. IncomingConnection from HS-LS3-4(MA). Use scientific information to illustrate that many traits of individuals, and the presence of specific alleles in a population, are due to interactions of genetic factors and environmental factors. Clarification Statements: Examples of genetic factors include the presence of multiple alleles for one gene and multiple genes influencing a trait. An example of the roleof the environment in expressed traits in an individual can include the likelihood of developing inherited diseases (e.g., heart disease, cancer) in relation to exposure to environmental toxins and lifestyle; an example in populations can include the maintenance of the allele for sickle-cell anemia in high frequency in malaria-affected regions because it confers partial resistance to malaria. State Assessment Boundary: Hardy-Weinberg calculations are not expected in state assessment. Concept: 8.MS-ESS1-1b OutgoingConnection to HS-LS2-5. Use a model that illustrates the roles of photosynthesis, cellular respiration, decomposition, and combustion to explain the cycling of carbon in its various forms among the biosphere, atmosphere, hydrosphere, and geosphere. Clarification Statements: The primary forms of carbon include carbon dioxide, hydrocarbons, waste (dead organic material), and biomass (organic material of living organisms). Examples of models could include simulations and mathematical models. State Assessment Boundary: The specific chemical steps of respiration, decomposition, and combustion are not expected in state assessment. Concept: MATH: S-IC.1,2 OutgoingConnection to HS-LS3-3. Apply concepts of probability to represent possible genotype and phenotype combinations in offspring caused by different types of Mendelian inheritance patterns. Clarification Statements: Representations can include Punnett squares, diagrams, pedigree charts, and simulations. Inheritance patterns include dominant-recessive, codominance, incomplete dominance, and sex-linked. Concept: HS-ESS2-6 IncomingConnection from HS-LS2-5. Use a model that illustrates the roles of photosynthesis, cellular respiration, decomposition, and combustion to explain the cycling of carbon in its various forms among the biosphere, atmosphere, hydrosphere, and geosphere. Clarification Statements: The primary forms of carbon include carbon dioxide, hydrocarbons, waste (dead organic material), and biomass (organic material of living organisms). Examples of models could include simulations and mathematical models. State Assessment Boundary: The specific chemical steps of respiration, decomposition, and combustion are not expected in state assessment. Concept: 3-LS4-2 OutgoingConnection to 8.MS-LS4-4. Use a model to describe the process of natural selection, in which genetic variations of some traits in a population increase some individuals’ likelihood of surviving and reproducing in a changing environment. Provide evidence that natural selection occurs over many generations. Clarification Statement: The model should include simple probability statements and proportional reasoning. Examples of evidence can include Darwin's finches, necks of giraffes, and peppered moths. State Assessment Boundary: Specific conditions that lead to natural selection are not expected in state assessment. Concept: ELA: W.7.9 OutgoingConnection to 7.MS-LS2-5. Evaluate competing design solutions for protecting an ecosystem. Discuss benefits and limitations of each design.* Clarification Statements: Examples of design solutions could include water, land, and species protection and the prevention of soil erosion. Examples of design solution constraints could include scientific, economic, and social considerations. Concept: 3-LS3-1 OutgoingConnection to 8.MS-LS4-5. Synthesize and communicate information about artificial selection, or the ways in which humans have changed the inheritance of desired traits in organisms. Clarification Statement: Emphasis is on the influence of humans on genetic outcomes in artificial selection (such as genetic modification, animal husbandry, and gene therapy). Concept: HS-LS2-4. Use a mathematical model to describe the transfer of energy from one trophic level to another. Explain how the inefficiency of energy transfer between trophic levels affects the relative number of organisms that can be supported at each trophic level and necessitates a constant input of energy from sunlight or inorganic compounds from the environment. Clarification Statement: The model should illustrate the “10% rule” of energy transfer and show approximate amounts of available energy at each trophic level in an ecosystem (up to five trophic levels). IncomingConnection from HS-LS1-6. Construct an explanation based on evidence that organic molecules are primarily composed of six elements, where carbon, hydrogen, and oxygen atoms may combine with nitrogen, sulfur, and phosphorus to form monomers that can further combine to form large carbon-based macromolecules. Clarification Statements: Monomers include amino acids, mono- and disaccharides, nucleotides, and fatty acids. Organic macromolecules include proteins, carbohydrates (polysaccharides), nucleic acids, and lipids. State Assessment Boundary: Details of specific chemical reactions or identification of specific macromolecule structures are not expected in state assessment. IncomingConnection from Math: F-LE.1, F-LE.5 IncomingConnection from 7.MS-LS2-3. Develop a model to describe that matter and energy are transferred among living and nonliving parts of an ecosystem and that both matter and energy are conserved through these processes. Clarification Statement: Cycling of matter should include the role of photosynthesis, cellular respiration, and decomposition, as well as transfer among producers, consumers (primary, secondary, and tertiary) and decomposers. Models may include food webs and food chains. State Assessment Boundary: Cycling of specific atoms (such as carbon or oxygen), or the biochemical steps of photosynthesis, cellular respiration, and decomposition are not expected in state assessment. Concept: HS-LS2-2. Use mathematical representations to support explanations that biotic and abiotic factors affect biodiversity, including genetic diversity within a population and species diversity within an ecosystem. Clarification Statements: Examples of biotic factors could include relationships among individuals (feeding relationships, symbiosis, competition) and disease. Examples of abiotic factors could include climate and weather conditions, natural disasters, and availability of resources. Examples of mathematical representations include finding the average, determining trends, and using graphical comparisons of multiple sets of data. OutgoingConnection to HS-LS2-6. Analyze data to show ecosystems tend to maintain relatively consistent numbers and types of organisms even when small changes in conditions occur but that extreme fluctuations in conditions may result in a new ecosystem. Construct an argument supported by evidence that ecosystems with greater biodiversity tend to have greater resistance and to change and resilience. Clarification Statement: Examples of changes in ecosystem conditions could include modest biological or physical changes, such as moderate hunting or a seasonal flood; and extreme changes, such as volcanic eruption, fires, the decline or loss of a keystone species, climate changes, ocean acidification, or sea level rise. IncomingConnection from Math: S-ID.A.1,2,3 IncomingConnection from 7.MS-LS2-4. Analyze data to provide evidence that disruptions (natural or human-made) to any physical or biological component of an ecosystem can lead to shifts in all its populations. Clarification Statement: Focus should be on ecosystem characteristics varying over time, including disruptions such as hurricanes, floods, wildfires, oil spills, and construction. IncomingConnection from 7.MS-LS2-6(MA). Explain how changes to the biodiversity of an ecosystem—the variety of species found in the ecosystem—may limit the availability of resources humans use. Clarification Statement: Examples of resources can include food, energy, medicine, and clean water. Concept: ELA: WHST.6-8.1 OutgoingConnection to 6.MS-LS1-3. Construct an argument supported by evidence that the body systems interact to carry out essential functions of life. Clarification Statements: Emphasis is on the functions and interactions of the body systems, not specific body parts or organs. An argument should convey that different types of cells can join together to form specialized tissues, which in turn may form organs that work together as body systems. Body systems to be included are the circulatory, digestive, respiratory, excretory, muscular/skeletal, and nervous systems. Essential functions of life include obtaining food and other nutrients (water, oxygen, minerals), releasing energy from food, removing wastes, responding to stimuli, maintaining internal conditions, and, growing/developing. An example of interacting systems could include the respiratory system taking in oxygen from the environment which the circulatory system delivers to cells for cellular respiration, or the digestive system taking in nutrients which the circulatory system transports to cells around the body. State Assessment Boundaries: The mechanism of one body system independent of others or the biochemical processes involved in body systems are not expected in state assessment. Describing the function or comparing different types of cells, tissues, or organs are not expected in state assessment. Concept: HS-LS1-5. Use a model to illustrate how photosynthesis uses light energy to transform water and carbon dioxide into oxygen and chemical energy stored in the bonds of sugar and other carbohydrates. Clarification Statements: Emphasis is on illustrating inputs and outputs of matter (including ATP) and the transfer and transformation of energy in photosynthesis by plants and other photosynthesizing organisms. Examples of models could include diagrams, chemical equations, and conceptual models. State Assessment Boundary: Specific biochemical steps of light reactions or the Calvin Cycle, or chemical structures of molecules are not expected in state assessment. OutgoingConnection to HS-LS2-5. Use a model that illustrates the roles of photosynthesis, cellular respiration, decomposition, and combustion to explain the cycling of carbon in its various forms among the biosphere, atmosphere, hydrosphere, and geosphere. Clarification Statements: The primary forms of carbon include carbon dioxide, hydrocarbons, waste (dead organic material), and biomass (organic material of living organisms). Examples of models could include simulations and mathematical models. State Assessment Boundary: The specific chemical steps of respiration, decomposition, and combustion are not expected in state assessment. IncomingConnection from 6.MS-LS1-2. Develop and use a model to describe how parts of cells contribute to the cellular functions of obtaining food, water, and other nutrients from its environment, disposing of waste, and producing energy for cellular processes. Clarification Statement: Parts of plants and animal cells include (a) the nucleus which, contains a cell's genetic material and regulates its activities (b) chloroplasts, which produce necessary food (sugar) and oxygen through photosynthesis (in plants) (c) mitochondria, which release energy from food through cellular respiration (d) vacuoles, which store materials, including water, nutrients, and waste (e) the cell membrane, which is a selective barrier that enables nutrients to enter the cell and wastes to be expelled, and (f) the cell wall, which provides structural support (in plants). State Assessment Boundary: Specific biochemical steps or chemical processes, the role of ATP, active transport processes involving the cell membrane, or identifying or comparing different types of cells are not expected in state assessment. IncomingConnection from 8.MS-LS1-7. Use informational text to describe that food molecules, including carbohydrates, proteins, and fats, are broken down and rearranged through chemical reactions forming new molecules that support cell growth and/or release of energy. State Assessment Boundary: Specific details of the chemical reaction for cellular respiration, biochemical steps of breaking down food, or the resulting molecules (e.g., carbohydrates are broken down into monosaccharides) are not expected in state assessment. Concept: ELA: WHST.6-8.2 OutgoingConnection to 8.MS-LS3-3(MA). Communicate through writing and in diagrams that chromosomes contain many distinct genes and that each gene holds the instructions for the production of specific proteins, which in turn affects the traits of an individual. State Assessment Boundary: Specific changes at the molecular level or mechanisms for protein synthesis are not expected in state assessment. Concept: 4-LS1-1 OutgoingConnection to 6.MS-LS1-3. Construct an argument supported by evidence that the body systems interact to carry out essential functions of life. Clarification Statements: Emphasis is on the functions and interactions of the body systems, not specific body parts or organs. An argument should convey that different types of cells can join together to form specialized tissues, which in turn may form organs that work together as body systems. Body systems to be included are the circulatory, digestive, respiratory, excretory, muscular/skeletal, and nervous systems. Essential functions of life include obtaining food and other nutrients (water, oxygen, minerals), releasing energy from food, removing wastes, responding to stimuli, maintaining internal conditions, and, growing/developing. An example of interacting systems could include the respiratory system taking in oxygen from the environment which the circulatory system delivers to cells for cellular respiration, or the digestive system taking in nutrients which the circulatory system transports to cells around the body. State Assessment Boundaries: The mechanism of one body system independent of others or the biochemical processes involved in body systems are not expected in state assessment. Describing the function or comparing different types of cells, tissues, or organs are not expected in state assessment. Concept: 8.MS-LS1-7. Use informational text to describe that food molecules, including carbohydrates, proteins, and fats, are broken down and rearranged through chemical reactions forming new molecules that support cell growth and/or release of energy. State Assessment Boundary: Specific details of the chemical reaction for cellular respiration, biochemical steps of breaking down food, or the resulting molecules (e.g., carbohydrates are broken down into monosaccharides) are not expected in state assessment. OutgoingConnection to HS-LS1-7. Use a model to illustrate that aerobic cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and new bonds form, resulting in new compounds and a net transfer of energy. Clarification Statements: Emphasis is on the conceptual understanding of the inputs and outputs of the process of aerobic cellular respiration. Examples of models could include diagrams, chemical equations, and conceptual models. The model should include the role of ATP for energy transfer in this process. Food molecules include sugars (carbohydrates), fats (lipids), and proteins. State Assessment Boundary: Identification of the steps or specific processes involved in cellular respiration are not expected in state assessment. OutgoingConnection to HS-LS1-5. Use a model to illustrate how photosynthesis uses light energy to transform water and carbon dioxide into oxygen and chemical energy stored in the bonds of sugar and other carbohydrates. Clarification Statements: Emphasis is on illustrating inputs and outputs of matter (including ATP) and the transfer and transformation of energy in photosynthesis by plants and other photosynthesizing organisms. Examples of models could include diagrams, chemical equations, and conceptual models. State Assessment Boundary: Specific biochemical steps of light reactions or the Calvin Cycle, or chemical structures of molecules are not expected in state assessment. OutgoingConnection to HS-LS1-6. Construct an explanation based on evidence that organic molecules are primarily composed of six elements, where carbon, hydrogen, and oxygen atoms may combine with nitrogen, sulfur, and phosphorus to form monomers that can further combine to form large carbon-based macromolecules. Clarification Statements: Monomers include amino acids, mono- and disaccharides, nucleotides, and fatty acids. Organic macromolecules include proteins, carbohydrates (polysaccharides), nucleic acids, and lipids. State Assessment Boundary: Details of specific chemical reactions or identification of specific macromolecule structures are not expected in state assessment. IncomingConnection from 6.MS-LS1-3. Construct an argument supported by evidence that the body systems interact to carry out essential functions of life. Clarification Statements: Emphasis is on the functions and interactions of the body systems, not specific body parts or organs. An argument should convey that different types of cells can join together to form specialized tissues, which in turn may form organs that work together as body systems. Body systems to be included are the circulatory, digestive, respiratory, excretory, muscular/skeletal, and nervous systems. Essential functions of life include obtaining food and other nutrients (water, oxygen, minerals), releasing energy from food, removing wastes, responding to stimuli, maintaining internal conditions, and, growing/developing. An example of interacting systems could include the respiratory system taking in oxygen from the environment which the circulatory system delivers to cells for cellular respiration, or the digestive system taking in nutrients which the circulatory system transports to cells around the body. State Assessment Boundaries: The mechanism of one body system independent of others or the biochemical processes involved in body systems are not expected in state assessment. Describing the function or comparing different types of cells, tissues, or organs are not expected in state assessment. IncomingConnection from 8.MS-PS1-5 IncomingConnection from 5-PS3-1 Concept: ELA:WHST.9-10.9 OutgoingConnection to HS-LS2-7. Analyze direct and indirect effects of human activities on biodiversity and ecosystem health, specifically habitat fragmentation, introduction of non-native or invasive species, overharvesting, pollution, and climate change. Evaluate and refine a solution for reducing the impacts of human activities on biodiversity and ecosystem health.* Clarification Statement: Examples of solutions can include captive breeding programs, habitat restoration, pollution mitigation, energy conservation, and ecotourism. Concept: HS-LS2-6. Analyze data to show ecosystems tend to maintain relatively consistent numbers and types of organisms even when small changes in conditions occur but that extreme fluctuations in conditions may result in a new ecosystem. Construct an argument supported by evidence that ecosystems with greater biodiversity tend to have greater resistance and to change and resilience. Clarification Statement: Examples of changes in ecosystem conditions could include modest biological or physical changes, such as moderate hunting or a seasonal flood; and extreme changes, such as volcanic eruption, fires, the decline or loss of a keystone species, climate changes, ocean acidification, or sea level rise. OutgoingConnection to HS-LS2-7. Analyze direct and indirect effects of human activities on biodiversity and ecosystem health, specifically habitat fragmentation, introduction of non-native or invasive species, overharvesting, pollution, and climate change. Evaluate and refine a solution for reducing the impacts of human activities on biodiversity and ecosystem health.* Clarification Statement: Examples of solutions can include captive breeding programs, habitat restoration, pollution mitigation, energy conservation, and ecotourism. IncomingConnection from ELA: WHST.9-10.1 IncomingConnection from HS-LS2-2. Use mathematical representations to support explanations that biotic and abiotic factors affect biodiversity, including genetic diversity within a population and species diversity within an ecosystem. Clarification Statements: Examples of biotic factors could include relationships among individuals (feeding relationships, symbiosis, competition) and disease. Examples of abiotic factors could include climate and weather conditions, natural disasters, and availability of resources. Examples of mathematical representations include finding the average, determining trends, and using graphical comparisons of multiple sets of data. Concept: HS-LS1-3. Provide evidence that homeostasis maintains internal body conditions through both body-wide feedback mechanisms and small-scale cellular processes. Clarification Statements: Feedback mechanisms include the promotion of a stimulus through positive feedback (e.g., injured tissues releasing chemicals in blood that activate platelets to facilitate blood clotting), and the inhibition of stimulus through negative feedback (e.g., insulin reducing high blood glucose to normal levels). Cellular processes include (a) passive transport and active transport of materials across the cell membrane to maintain specific concentrations of water and other nutrients in the cell and (b) the role of lysosomes in recycling wastes, macromolecules, and cell parts into monomers. State Assessment Boundary: Interactions at the molecular level (for example, how insulin is produced) are not expected in state assessment. IncomingConnection from HS-LS1-2. Develop and use a model to illustrate the key functions of animal body systems, including (a) food digestion, nutrient uptake, and transport through the body, (b) exchange of oxygen and carbon dioxide, (c) removal of wastes, and (d) regulation of body processes. Clarification Statement: Emphasis is on the primary function of the following body systems (and structures): digestive (mouth, stomach, small intestine [villi], large intestine, pancreas), respiratory (lungs [alveoli], diaphragm), circulatory (heart, veins, arteries, capillaries), excretory (kidneys, liver, skin), and nervous (neurons, brain, spinal cord). State Assessment Boundary: Chemical reactions in cells, details of particular structures (such as the structure of the neuron), or the identification of specific proteins in cells are not expected in state assessment. Concept: 4-LS1-1 OutgoingConnection to 7.MS-LS1-4. Construct an explanation based on evidence for how characteristic animal behaviors and specialized plant structures increase the probability of successful reproduction of animals and plants. Clarification Statements: Examples of animal behaviors that affect the probability of animal reproduction could include nest building to protect young from cold, herding of animals to protect young from predators, and vocalization of animals and colorful plumage to attract mates for breeding. Examples of animal behaviors that affect the probability of plant reproduction could include (a) transferring pollen or seeds and (b) creating conditions for seed germination and growth. Examples of plant structures that affect the probability of plant reproduction could include bright flowers attracting butterflies that transfer pollen, flower nectar and odors that attract insects that transfer pollen, and hard shells on nuts that squirrels bury. State Assessment Boundary: Natural selection is not expected in state assessment. Concept: 8.MS-LS1-5. Construct an argument based on evidence for how environmental and genetic factors influence the growth of organisms. Clarification Statements: Examples of environmental conditions could include availability of food, light, space, and water. Examples of genetic factors could include the genes responsible for size differences in different breeds of dogs, such as great danes and chihuahuas. Examples of environmental factors could include drought decreasing plant growth, fertilizer increasing plant growth, and fish growing larger in large ponds than they do in small ponds. Examples of both genetic and environmental factors could include different varieties of plants growing at different rates in different conditions. State Assessment Boundary: Methods of reproduction, genetic mechanisms, gene regulation, biochemical processes, or natural selection are not expected in state assessment. OutgoingConnection to HS-LS3-3. Apply concepts of probability to represent possible genotype and phenotype combinations in offspring caused by different types of Mendelian inheritance patterns. Clarification Statements: Representations can include Punnett squares, diagrams, pedigree charts, and simulations. Inheritance patterns include dominant-recessive, codominance, incomplete dominance, and sex-linked. IncomingConnection from 3-LS4-3 IncomingConnection from ELA: WHST.6-8.1 IncomingConnection from 8.MS-LS3-3(MA). Communicate through writing and in diagrams that chromosomes contain many distinct genes and that each gene holds the instructions for the production of specific proteins, which in turn affects the traits of an individual. State Assessment Boundary: Specific changes at the molecular level or mechanisms for protein synthesis are not expected in state assessment. IncomingConnection from 3-LS3-2 Concept: ELA: RST.6-8.1 OutgoingConnection to 8.MS-LS3-2. Construct an argument based on evidence for how asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. Compare and contrast advantages and disadvantages of asexual and sexual reproduction. Clarification Statements: Examples of an advantage of sexual reproduction can include genetic variation when the environment changes or a disease is introduced, while examples of an advantage of asexual reproduction can include not using energy to find a mate and fast reproduction rates. Examples of a disadvantage of sexual reproduction can include using resources to find a mate, while a disadvantage in asexual reproduction can be the lack of genetic variation when the environment changes or a disease is introduced. Concept: 7.MS-ETS1-2 OutgoingConnection to 7.MS-LS2-5. Evaluate competing design solutions for protecting an ecosystem. Discuss benefits and limitations of each design.* Clarification Statements: Examples of design solutions could include water, land, and species protection and the prevention of soil erosion. Examples of design solution constraints could include scientific, economic, and social considerations. Concept: 7.MS-LS1-4. Construct an explanation based on evidence for how characteristic animal behaviors and specialized plant structures increase the probability of successful reproduction of animals and plants. Clarification Statements: Examples of animal behaviors that affect the probability of animal reproduction could include nest building to protect young from cold, herding of animals to protect young from predators, and vocalization of animals and colorful plumage to attract mates for breeding. Examples of animal behaviors that affect the probability of plant reproduction could include (a) transferring pollen or seeds and (b) creating conditions for seed germination and growth. Examples of plant structures that affect the probability of plant reproduction could include bright flowers attracting butterflies that transfer pollen, flower nectar and odors that attract insects that transfer pollen, and hard shells on nuts that squirrels bury. State Assessment Boundary: Natural selection is not expected in state assessment. OutgoingConnection to 8.MS-LS4-4. Use a model to describe the process of natural selection, in which genetic variations of some traits in a population increase some individuals’ likelihood of surviving and reproducing in a changing environment. Provide evidence that natural selection occurs over many generations. Clarification Statement: The model should include simple probability statements and proportional reasoning. Examples of evidence can include Darwin's finches, necks of giraffes, and peppered moths. State Assessment Boundary: Specific conditions that lead to natural selection are not expected in state assessment. IncomingConnection from 3-LS4-2 IncomingConnection from 4-LS1-1 IncomingConnection from ELA: WHST.6-8.9 Concept: 3-LS4-3 OutgoingConnection to 8.MS-LS4-4. Use a model to describe the process of natural selection, in which genetic variations of some traits in a population increase some individuals’ likelihood of surviving and reproducing in a changing environment. Provide evidence that natural selection occurs over many generations. Clarification Statement: The model should include simple probability statements and proportional reasoning. Examples of evidence can include Darwin's finches, necks of giraffes, and peppered moths. State Assessment Boundary: Specific conditions that lead to natural selection are not expected in state assessment. Concept: 3-LS4-3 OutgoingConnection to 7.MS-LS2-4. Analyze data to provide evidence that disruptions (natural or human-made) to any physical or biological component of an ecosystem can lead to shifts in all its populations. Clarification Statement: Focus should be on ecosystem characteristics varying over time, including disruptions such as hurricanes, floods, wildfires, oil spills, and construction. Concept: HS-LS1-4. Construct an explanation using evidence for why the cell cycle is necessary for the growth, maintenance, and repair of multicellular organisms. Model the major events of the cell cycle, including (a) cell growth, DNA replication, (b) separation of chromosomes (mitosis), and (c) separation of cell contents. State Assessment Boundary: Specific gene control mechanisms or specific details of each event (e.g., steps of mitosis) are not expected in state assessment. IncomingConnection from HS-LS1-2. Develop and use a model to illustrate the key functions of animal body systems, including (a) food digestion, nutrient uptake, and transport through the body, (b) exchange of oxygen and carbon dioxide, (c) removal of wastes, and (d) regulation of body processes. Clarification Statement: Emphasis is on the primary function of the following body systems (and structures): digestive (mouth, stomach, small intestine [villi], large intestine, pancreas), respiratory (lungs [alveoli], diaphragm), circulatory (heart, veins, arteries, capillaries), excretory (kidneys, liver, skin), and nervous (neurons, brain, spinal cord). State Assessment Boundary: Chemical reactions in cells, details of particular structures (such as the structure of the neuron), or the identification of specific proteins in cells are not expected in state assessment. IncomingConnection from 6.MS-LS1-2. Develop and use a model to describe how parts of cells contribute to the cellular functions of obtaining food, water, and other nutrients from its environment, disposing of waste, and producing energy for cellular processes. Clarification Statement: Parts of plants and animal cells include (a) the nucleus which, contains a cell's genetic material and regulates its activities (b) chloroplasts, which produce necessary food (sugar) and oxygen through photosynthesis (in plants) (c) mitochondria, which release energy from food through cellular respiration (d) vacuoles, which store materials, including water, nutrients, and waste (e) the cell membrane, which is a selective barrier that enables nutrients to enter the cell and wastes to be expelled, and (f) the cell wall, which provides structural support (in plants). State Assessment Boundary: Specific biochemical steps or chemical processes, the role of ATP, active transport processes involving the cell membrane, or identifying or comparing different types of cells are not expected in state assessment. IncomingConnection from HS-LS3-1. Develop and use a model to show how DNA in the form of chromosomes is passed from parents to offspring through the processes of meiosis and fertilization in sexual reproduction. Clarification Statement: The model should demonstrate that an individual’s characteristics (phenotype) result, in part, from interactions among the various proteins expressed by one’s genes (genotype). State Assessment Boundary: Identification of specific phases of meiosis or the biochemical mechanisms involved are not expected in state assessment. Concept: Math: F-LE.1, F-LE.5 OutgoingConnection to HS-LS2-4. Use a mathematical model to describe the transfer of energy from one trophic level to another. Explain how the inefficiency of energy transfer between trophic levels affects the relative number of organisms that can be supported at each trophic level and necessitates a constant input of energy from sunlight or inorganic compounds from the environment. Clarification Statement: The model should illustrate the “10% rule” of energy transfer and show approximate amounts of available energy at each trophic level in an ecosystem (up to five trophic levels). Concept: 8.MS-LS3-1. Develop and use a model to describe that structural changes to genes (mutations) may or may not result in changes to proteins, and if there are changes to proteins there may be harmful, beneficial, or neutral changes to traits. Clarification Statements: An example of a beneficial change to the organism may be a strain of bacteria becoming resistant to an antibiotic. A harmful change could be the development of cancer; a neutral change may change the hair color of an organism with no direct consequence. State Assessment Boundary: Specific changes at the molecular level (e.g., amino acid sequence change), mechanisms for protein synthesis, or specific types of mutations are not expected in state assessment. OutgoingConnection to HS-LS1-1. Construct a model of transcription and translation to explain the roles of DNA and RNA that code for proteins that regulate and carry out essential functions of life. Clarification Statements: Proteins that regulate and carry out essential functions of life include enzymes (which speed up chemical reactions), structural proteins (which provide structure and enable movement), and hormones and receptors (which send and receive signals). The model should show the double-stranded structure of DNA, including genes as part of DNA’s transcribed strand, with complementary bases on the non-transcribed strand. State Assessment Boundaries: Specific names of proteins or specific steps of transcriptionand translation are not expected in state assessment. Cell structures included in transcription and translation will be limited to nucleus, nuclear membrane, and ribosomes for state assessment. OutgoingConnection to HS-LS3-2. Make and defend a claim based on evidence that genetic variations (alleles) may result from (a) new genetic combinations via the processes of crossing over and random segregation of chromosomes during meiosis, (b) mutations that occur during replication, and/or (c) mutations caused by environmental factors. Recognize that mutations that occur in gametes can be passed to offspring. Clarification Statement: Examples of evidence of genetic variation can include the work of McClintock in crossing over of maize chromosomes and the development of cancer due to DNA replication errors and UV ray exposure. State Assessment Boundary: Specific phases of meiosis or identification of specific types of mutations are not expected in state assessment. OutgoingConnection to 8.MS-LS4-4. Use a model to describe the process of natural selection, in which genetic variations of some traits in a population increase some individuals’ likelihood of surviving and reproducing in a changing environment. Provide evidence that natural selection occurs over many generations. Clarification Statement: The model should include simple probability statements and proportional reasoning. Examples of evidence can include Darwin's finches, necks of giraffes, and peppered moths. State Assessment Boundary: Specific conditions that lead to natural selection are not expected in state assessment. IncomingConnection from 8.MS-LS3-3(MA). Communicate through writing and in diagrams that chromosomes contain many distinct genes and that each gene holds the instructions for the production of specific proteins, which in turn affects the traits of an individual. State Assessment Boundary: Specific changes at the molecular level or mechanisms for protein synthesis are not expected in state assessment. Concept: HS-LS1-7. Use a model to illustrate that aerobic cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and new bonds form, resulting in new compounds and a net transfer of energy. Clarification Statements: Emphasis is on the conceptual understanding of the inputs and outputs of the process of aerobic cellular respiration. Examples of models could include diagrams, chemical equations, and conceptual models. The model should include the role of ATP for energy transfer in this process. Food molecules include sugars (carbohydrates), fats (lipids), and proteins. State Assessment Boundary: Identification of the steps or specific processes involved in cellular respiration are not expected in state assessment. IncomingConnection from HS-LS1-6. Construct an explanation based on evidence that organic molecules are primarily composed of six elements, where carbon, hydrogen, and oxygen atoms may combine with nitrogen, sulfur, and phosphorus to form monomers that can further combine to form large carbon-based macromolecules. Clarification Statements: Monomers include amino acids, mono- and disaccharides, nucleotides, and fatty acids. Organic macromolecules include proteins, carbohydrates (polysaccharides), nucleic acids, and lipids. State Assessment Boundary: Details of specific chemical reactions or identification of specific macromolecule structures are not expected in state assessment. IncomingConnection from 8.MS-LS1-7. Use informational text to describe that food molecules, including carbohydrates, proteins, and fats, are broken down and rearranged through chemical reactions forming new molecules that support cell growth and/or release of energy. State Assessment Boundary: Specific details of the chemical reaction for cellular respiration, biochemical steps of breaking down food, or the resulting molecules (e.g., carbohydrates are broken down into monosaccharides) are not expected in state assessment. Concept: HS-LS3-1. Develop and use a model to show how DNA in the form of chromosomes is passed from parents to offspring through the processes of meiosis and fertilization in sexual reproduction. Clarification Statement: The model should demonstrate that an individual’s characteristics (phenotype) result, in part, from interactions among the various proteins expressed by one’s genes (genotype). State Assessment Boundary: Identification of specific phases of meiosis or the biochemical mechanisms involved are not expected in state assessment. OutgoingConnection to HS-LS1-4. Construct an explanation using evidence for why the cell cycle is necessary for the growth, maintenance, and repair of multicellular organisms. Model the major events of the cell cycle, including (a) cell growth, DNA replication, (b) separation of chromosomes (mitosis), and (c) separation of cell contents. State Assessment Boundary: Specific gene control mechanisms or specific details of each event (e.g., steps of mitosis) are not expected in state assessment. OutgoingConnection to HS-LS3-2. Make and defend a claim based on evidence that genetic variations (alleles) may result from (a) new genetic combinations via the processes of crossing over and random segregation of chromosomes during meiosis, (b) mutations that occur during replication, and/or (c) mutations caused by environmental factors. Recognize that mutations that occur in gametes can be passed to offspring. Clarification Statement: Examples of evidence of genetic variation can include the work of McClintock in crossing over of maize chromosomes and the development of cancer due to DNA replication errors and UV ray exposure. State Assessment Boundary: Specific phases of meiosis or identification of specific types of mutations are not expected in state assessment. IncomingConnection from 8.MS-LS3-2. Construct an argument based on evidence for how asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. Compare and contrast advantages and disadvantages of asexual and sexual reproduction. Clarification Statements: Examples of an advantage of sexual reproduction can include genetic variation when the environment changes or a disease is introduced, while examples of an advantage of asexual reproduction can include not using energy to find a mate and fast reproduction rates. Examples of a disadvantage of sexual reproduction can include using resources to find a mate, while a disadvantage in asexual reproduction can be the lack of genetic variation when the environment changes or a disease is introduced. IncomingConnection from HS-LS1-1. Construct a model of transcription and translation to explain the roles of DNA and RNA that code for proteins that regulate and carry out essential functions of life. Clarification Statements: Proteins that regulate and carry out essential functions of life include enzymes (which speed up chemical reactions), structural proteins (which provide structure and enable movement), and hormones and receptors (which send and receive signals). The model should show the double-stranded structure of DNA, including genes as part of DNA’s transcribed strand, with complementary bases on the non-transcribed strand. State Assessment Boundaries: Specific names of proteins or specific steps of transcriptionand translation are not expected in state assessment. Cell structures included in transcription and translation will be limited to nucleus, nuclear membrane, and ribosomes for state assessment. Concept: 7.MS-LS2-2. Describe how relationships among and between organisms in an ecosystem can be competitive, predatory, parasitic, and mutually beneficial and that these interactions are found across multiple ecosystems. Clarification Statement: Emphasis is on describing consistent patterns of interactions in different ecosystems in terms of relationships among and between organisms. OutgoingConnection to 7.MS-LS2-3. Develop a model to describe that matter and energy are transferred among living and nonliving parts of an ecosystem and that both matter and energy are conserved through these processes. Clarification Statement: Cycling of matter should include the role of photosynthesis, cellular respiration, and decomposition, as well as transfer among producers, consumers (primary, secondary, and tertiary) and decomposers. Models may include food webs and food chains. State Assessment Boundary: Cycling of specific atoms (such as carbon or oxygen), or the biochemical steps of photosynthesis, cellular respiration, and decomposition are not expected in state assessment. OutgoingConnection to 7.MS-LS2-1. Analyze and interpret data to provide evidence for the effects of periods of abundant and scarce resources on the growth of organisms and the size of populations in an ecosystem. IncomingConnection from 2-LS2-3 Concept: 7.MS-LS2-3. Develop a model to describe that matter and energy are transferred among living and nonliving parts of an ecosystem and that both matter and energy are conserved through these processes. Clarification Statement: Cycling of matter should include the role of photosynthesis, cellular respiration, and decomposition, as well as transfer among producers, consumers (primary, secondary, and tertiary) and decomposers. Models may include food webs and food chains. State Assessment Boundary: Cycling of specific atoms (such as carbon or oxygen), or the biochemical steps of photosynthesis, cellular respiration, and decomposition are not expected in state assessment. OutgoingConnection to HS-LS2-4. Use a mathematical model to describe the transfer of energy from one trophic level to another. Explain how the inefficiency of energy transfer between trophic levels affects the relative number of organisms that can be supported at each trophic level and necessitates a constant input of energy from sunlight or inorganic compounds from the environment. Clarification Statement: The model should illustrate the “10% rule” of energy transfer and show approximate amounts of available energy at each trophic level in an ecosystem (up to five trophic levels). OutgoingConnection to HS-LS2-5. Use a model that illustrates the roles of photosynthesis, cellular respiration, decomposition, and combustion to explain the cycling of carbon in its various forms among the biosphere, atmosphere, hydrosphere, and geosphere. Clarification Statements: The primary forms of carbon include carbon dioxide, hydrocarbons, waste (dead organic material), and biomass (organic material of living organisms). Examples of models could include simulations and mathematical models. State Assessment Boundary: The specific chemical steps of respiration, decomposition, and combustion are not expected in state assessment. IncomingConnection from 5-LS2-1 IncomingConnection from 5-PS3-1 IncomingConnection from 6.MS-LS1-2. Develop and use a model to describe how parts of cells contribute to the cellular functions of obtaining food, water, and other nutrients from its environment, disposing of waste, and producing energy for cellular processes. Clarification Statement: Parts of plants and animal cells include (a) the nucleus which, contains a cell's genetic material and regulates its activities (b) chloroplasts, which produce necessary food (sugar) and oxygen through photosynthesis (in plants) (c) mitochondria, which release energy from food through cellular respiration (d) vacuoles, which store materials, including water, nutrients, and waste (e) the cell membrane, which is a selective barrier that enables nutrients to enter the cell and wastes to be expelled, and (f) the cell wall, which provides structural support (in plants). State Assessment Boundary: Specific biochemical steps or chemical processes, the role of ATP, active transport processes involving the cell membrane, or identifying or comparing different types of cells are not expected in state assessment. IncomingConnection from 7.MS-LS2-2. Describe how relationships among and between organisms in an ecosystem can be competitive, predatory, parasitic, and mutually beneficial and that these interactions are found across multiple ecosystems. Clarification Statement: Emphasis is on describing consistent patterns of interactions in different ecosystems in terms of relationships among and between organisms. Concept: HS-LS3-2. Make and defend a claim based on evidence that genetic variations (alleles) may result from (a) new genetic combinations via the processes of crossing over and random segregation of chromosomes during meiosis, (b) mutations that occur during replication, and/or (c) mutations caused by environmental factors. Recognize that mutations that occur in gametes can be passed to offspring. Clarification Statement: Examples of evidence of genetic variation can include the work of McClintock in crossing over of maize chromosomes and the development of cancer due to DNA replication errors and UV ray exposure. State Assessment Boundary: Specific phases of meiosis or identification of specific types of mutations are not expected in state assessment. OutgoingConnection to HS-LS3-4(MA). Use scientific information to illustrate that many traits of individuals, and the presence of specific alleles in a population, are due to interactions of genetic factors and environmental factors. Clarification Statements: Examples of genetic factors include the presence of multiple alleles for one gene and multiple genes influencing a trait. An example of the roleof the environment in expressed traits in an individual can include the likelihood of developing inherited diseases (e.g., heart disease, cancer) in relation to exposure to environmental toxins and lifestyle; an example in populations can include the maintenance of the allele for sickle-cell anemia in high frequency in malaria-affected regions because it confers partial resistance to malaria. State Assessment Boundary: Hardy-Weinberg calculations are not expected in state assessment. IncomingConnection from ELA:WHST.9-10.1 IncomingConnection from 8.MS-LS3-1. Develop and use a model to describe that structural changes to genes (mutations) may or may not result in changes to proteins, and if there are changes to proteins there may be harmful, beneficial, or neutral changes to traits. Clarification Statements: An example of a beneficial change to the organism may be a strain of bacteria becoming resistant to an antibiotic. A harmful change could be the development of cancer; a neutral change may change the hair color of an organism with no direct consequence. State Assessment Boundary: Specific changes at the molecular level (e.g., amino acid sequence change), mechanisms for protein synthesis, or specific types of mutations are not expected in state assessment. IncomingConnection from HS-LS3-1. Develop and use a model to show how DNA in the form of chromosomes is passed from parents to offspring through the processes of meiosis and fertilization in sexual reproduction. Clarification Statement: The model should demonstrate that an individual’s characteristics (phenotype) result, in part, from interactions among the various proteins expressed by one’s genes (genotype). State Assessment Boundary: Identification of specific phases of meiosis or the biochemical mechanisms involved are not expected in state assessment. Concept: 5-LS2-1 OutgoingConnection to 7.MS-LS2-1. Analyze and interpret data to provide evidence for the effects of periods of abundant and scarce resources on the growth of organisms and the size of populations in an ecosystem. Concept: 8.MS-PS1-5 OutgoingConnection to 8.MS-LS1-7. Use informational text to describe that food molecules, including carbohydrates, proteins, and fats, are broken down and rearranged through chemical reactions forming new molecules that support cell growth and/or release of energy. State Assessment Boundary: Specific details of the chemical reaction for cellular respiration, biochemical steps of breaking down food, or the resulting molecules (e.g., carbohydrates are broken down into monosaccharides) are not expected in state assessment. Concept: 6.MS-LS4-2. Construct an argument using anatomical structures to support evolutionary relationships among and between fossil organisms and modern organisms. Clarification Statement: Evolutionary relationships include (a) some organisms have similar traits with similar functions because they were inherited from a common ancestor, (b) some organisms have similar traits that serve similar functions because they live in similar environments, and (c) some organisms have traits inherited from common ancestors that no longer serve their original function because their environments are different than their ancestors' environments. OutgoingConnection to HS-LS4-1. Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence, including molecular, anatomical, and developmental similarities inherited from a common ancestor (homologies), seen through fossils and documented laboratory and field observations. Clarification Statement: Examples of evidence can include the work of Margulis on endosymbiosis, examination of genomes, and analyses of vestigial or skeletal structures. IncomingConnection from ELA: WHST.6-8.1 IncomingConnection from 4-LS1-1 IncomingConnection from 3-LS4-1 Concept: ELA: SL.6.2 OutgoingConnection to 8.MS-LS4-5. Synthesize and communicate information about artificial selection, or the ways in which humans have changed the inheritance of desired traits in organisms. Clarification Statement: Emphasis is on the influence of humans on genetic outcomes in artificial selection (such as genetic modification, animal husbandry, and gene therapy). Concept: HS-LS2-5. Use a model that illustrates the roles of photosynthesis, cellular respiration, decomposition, and combustion to explain the cycling of carbon in its various forms among the biosphere, atmosphere, hydrosphere, and geosphere. Clarification Statements: The primary forms of carbon include carbon dioxide, hydrocarbons, waste (dead organic material), and biomass (organic material of living organisms). Examples of models could include simulations and mathematical models. State Assessment Boundary: The specific chemical steps of respiration, decomposition, and combustion are not expected in state assessment. OutgoingConnection to HS-ESS2-6 IncomingConnection from 8.MS-ESS1-1b IncomingConnection from HS-LS1-5. Use a model to illustrate how photosynthesis uses light energy to transform water and carbon dioxide into oxygen and chemical energy stored in the bonds of sugar and other carbohydrates. Clarification Statements: Emphasis is on illustrating inputs and outputs of matter (including ATP) and the transfer and transformation of energy in photosynthesis by plants and other photosynthesizing organisms. Examples of models could include diagrams, chemical equations, and conceptual models. State Assessment Boundary: Specific biochemical steps of light reactions or the Calvin Cycle, or chemical structures of molecules are not expected in state assessment. IncomingConnection from 7.MS-LS2-3. Develop a model to describe that matter and energy are transferred among living and nonliving parts of an ecosystem and that both matter and energy are conserved through these processes. Clarification Statement: Cycling of matter should include the role of photosynthesis, cellular respiration, and decomposition, as well as transfer among producers, consumers (primary, secondary, and tertiary) and decomposers. Models may include food webs and food chains. State Assessment Boundary: Cycling of specific atoms (such as carbon or oxygen), or the biochemical steps of photosynthesis, cellular respiration, and decomposition are not expected in state assessment. Concept: 4-LS1-1 OutgoingConnection to 6.MS-LS4-2. Construct an argument using anatomical structures to support evolutionary relationships among and between fossil organisms and modern organisms. Clarification Statement: Evolutionary relationships include (a) some organisms have similar traits with similar functions because they were inherited from a common ancestor, (b) some organisms have similar traits that serve similar functions because they live in similar environments, and (c) some organisms have traits inherited from common ancestors that no longer serve their original function because their environments are different than their ancestors' environments. Concept: 5-PS3-1 OutgoingConnection to 7.MS-LS2-1. Analyze and interpret data to provide evidence for the effects of periods of abundant and scarce resources on the growth of organisms and the size of populations in an ecosystem. Concept: 7.MS-ESS3-4 IncomingConnection from 7.MS-LS2-5. Evaluate competing design solutions for protecting an ecosystem. Discuss benefits and limitations of each design.* Clarification Statements: Examples of design solutions could include water, land, and species protection and the prevention of soil erosion. Examples of design solution constraints could include scientific, economic, and social considerations. Concept: 5-PS3-1 OutgoingConnection to 8.MS-LS1-7. Use informational text to describe that food molecules, including carbohydrates, proteins, and fats, are broken down and rearranged through chemical reactions forming new molecules that support cell growth and/or release of energy. State Assessment Boundary: Specific details of the chemical reaction for cellular respiration, biochemical steps of breaking down food, or the resulting molecules (e.g., carbohydrates are broken down into monosaccharides) are not expected in state assessment. Concept: 8.MS-ESS3-5 OutgoingConnection to HS-LS2-7. Analyze direct and indirect effects of human activities on biodiversity and ecosystem health, specifically habitat fragmentation, introduction of non-native or invasive species, overharvesting, pollution, and climate change. Evaluate and refine a solution for reducing the impacts of human activities on biodiversity and ecosystem health.* Clarification Statement: Examples of solutions can include captive breeding programs, habitat restoration, pollution mitigation, energy conservation, and ecotourism. Concept: 3-LS4-4 OutgoingConnection to 7.MS-LS2-1. Analyze and interpret data to provide evidence for the effects of periods of abundant and scarce resources on the growth of organisms and the size of populations in an ecosystem. Concept: HS-LS3-4(MA). Use scientific information to illustrate that many traits of individuals, and the presence of specific alleles in a population, are due to interactions of genetic factors and environmental factors. Clarification Statements: Examples of genetic factors include the presence of multiple alleles for one gene and multiple genes influencing a trait. An example of the roleof the environment in expressed traits in an individual can include the likelihood of developing inherited diseases (e.g., heart disease, cancer) in relation to exposure to environmental toxins and lifestyle; an example in populations can include the maintenance of the allele for sickle-cell anemia in high frequency in malaria-affected regions because it confers partial resistance to malaria. State Assessment Boundary: Hardy-Weinberg calculations are not expected in state assessment. OutgoingConnection to HS-LS4-2. Construct an explanation based on evidence that Darwin's theory evolution by natural selection occurs in a population when the following conditions are met (a) more offspring are produced than can be supported by the environment, (b) there is heritable variation among individuals, and (c) some of these variations lead to differential fitness among individuals as some individuals are better able to compete for limited resources than others. Clarification Statement: Emphasis is on the overall result is an increase in the proportion of those individuals with advantageous heritable traits that are better able to survive and reproduce in the environment. IncomingConnection from HS-LS3-2. Make and defend a claim based on evidence that genetic variations (alleles) may result from (a) new genetic combinations via the processes of crossing over and random segregation of chromosomes during meiosis, (b) mutations that occur during replication, and/or (c) mutations caused by environmental factors. Recognize that mutations that occur in gametes can be passed to offspring. Clarification Statement: Examples of evidence of genetic variation can include the work of McClintock in crossing over of maize chromosomes and the development of cancer due to DNA replication errors and UV ray exposure. State Assessment Boundary: Specific phases of meiosis or identification of specific types of mutations are not expected in state assessment. Concept: 3-LS4-1 OutgoingConnection to 6.MS-LS4-2. Construct an argument using anatomical structures to support evolutionary relationships among and between fossil organisms and modern organisms. Clarification Statement: Evolutionary relationships include (a) some organisms have similar traits with similar functions because they were inherited from a common ancestor, (b) some organisms have similar traits that serve similar functions because they live in similar environments, and (c) some organisms have traits inherited from common ancestors that no longer serve their original function because their environments are different than their ancestors' environments. OutgoingConnection to 6.MS-LS4-1. Analyze and interpret evidence from the fossil record to describe organisms and their environment, extinctions and changes to life forms throughout the history of Earth. Clarification Statement: Examples of evidence include sets of fossils that indicate a specific type of environment, anatomical structures that indicate the function of an organism in the environment, and fossilized tracks that indicate behavior of organisms. State Assessment Boundary: Names of individual species, geological eras in the fossil record, or mechanisms for extinction or speciation are not expected in state assessment. Concept: ELA: WHST.6-8.9 OutgoingConnection to 7.MS-LS1-4. Construct an explanation based on evidence for how characteristic animal behaviors and specialized plant structures increase the probability of successful reproduction of animals and plants. Clarification Statements: Examples of animal behaviors that affect the probability of animal reproduction could include nest building to protect young from cold, herding of animals to protect young from predators, and vocalization of animals and colorful plumage to attract mates for breeding. Examples of animal behaviors that affect the probability of plant reproduction could include (a) transferring pollen or seeds and (b) creating conditions for seed germination and growth. Examples of plant structures that affect the probability of plant reproduction could include bright flowers attracting butterflies that transfer pollen, flower nectar and odors that attract insects that transfer pollen, and hard shells on nuts that squirrels bury. State Assessment Boundary: Natural selection is not expected in state assessment. Concept: 7.MS-LS2-6(MA). Explain how changes to the biodiversity of an ecosystem—the variety of species found in the ecosystem—may limit the availability of resources humans use. Clarification Statement: Examples of resources can include food, energy, medicine, and clean water. OutgoingConnection to 7.MS-LS2-5. Evaluate competing design solutions for protecting an ecosystem. Discuss benefits and limitations of each design.* Clarification Statements: Examples of design solutions could include water, land, and species protection and the prevention of soil erosion. Examples of design solution constraints could include scientific, economic, and social considerations. OutgoingConnection to HS-LS2-2. Use mathematical representations to support explanations that biotic and abiotic factors affect biodiversity, including genetic diversity within a population and species diversity within an ecosystem. Clarification Statements: Examples of biotic factors could include relationships among individuals (feeding relationships, symbiosis, competition) and disease. Examples of abiotic factors could include climate and weather conditions, natural disasters, and availability of resources. Examples of mathematical representations include finding the average, determining trends, and using graphical comparisons of multiple sets of data. IncomingConnection from 7.MS-LS2-1. Analyze and interpret data to provide evidence for the effects of periods of abundant and scarce resources on the growth of organisms and the size of populations in an ecosystem. Massachusetts Department of Elementary and Secondary Education April 2016