DRAFT REVISED

Massachusetts Science and Technology/Engineering Standards

Pre-K to Grade 8 by grade and Introductory High School Courses

Based on the Next Generation Science Standards

December, 2013

This set of draft revised STE standards will remain in draft form until they are moved forward for adoption in the 2015-2016 school year. Please direct all input on these standards, including comments, suggested edits, and questions, to:
mathscienteche@doe.mass.edu
Table of Contents

Introduction to the Standards .. 2

Draft Revised Science and Technology/Engineering Learning Standards

 Grade Pre-K.. 7
 Grade K.. 11
 Grade 1.. 14
 Grade 2.. 17
 Grade 3.. 20
 Grade 4.. 24
 Grade 5.. 29
 Grade 6.. 33
 Grade 7.. 37
 Grade 8.. 42
 Earth and Space Science .. 49
 Biology .. 52
 Chemistry ... 56
 Introductory Physics.. 59
 Technology/Engineering ... 62
Introduction to the Standards

Key shifts in the draft revised standards

The STE standards are intended to drive coherent, rigorous instruction that results in student mastery and application of scientific, technological and engineering knowledge, reasoning, and skills. The draft revised standards reflect several key shifts from prior Massachusetts standards, a number of which reflect similar shifts in recent mathematics and ELA standards:

1. Integration of disciplinary core ideas and practices reflect the interconnected nature of science and engineering.
 The standards integrate disciplinary core ideas (concepts) with scientific and engineering practices (skills). Currently, Massachusetts science and technology/engineering standards focus primarily on content. The integration of rigorous concepts and practices reflects how science and engineering is applied and practiced every day and is shown to enhance student learning of both.

 The standards articulate key knowledge and skills students need to succeed in entry-level, credit-bearing science, engineering or technical courses in college or university; certificate or workplace training programs requiring an equivalent level of science; or comparable entry-level science or technical courses, as well as jobs and postsecondary opportunities that require scientific and technical proficiency to earn a living wage.

3. Science and technology/engineering concepts and practices progress coherently from Pre-K to high school.
 The standards emphasize a focused and coherent progression of knowledge and skills from grade band to grade band, allowing for a dynamic process of knowledge and skill building throughout a student’s scientific education. The progression gives students the opportunity to learn more sophisticated material and re-conceptualize their understanding of how the natural and designed world works, leading to the scientific and technical understanding needed for post-secondary success.

4. Focus on deeper understanding and application of concepts.
 The standards are focused on a small set of disciplinary core ideas that build across grades and lead to deeper understanding and application of concepts. The standards are written to both articulate the broad concepts and key components that specify expected learning.

5. Each discipline is integrated in grade-by-grade standards Pre-K to grade 8.
 To achieve consistency across schools and districts and to facilitate collaborative work, resource sharing, and effective education for transient populations, the PreK to grade 8 standards are presented by grade level. All four disciplines, including earth and space science, life science, physical science, and technology/engineering are included in each grade to encourage integration across the year and through curriculum, including the use of crosscutting concepts and nature of science themes.

6. The STE standards are coordinated with the Commonwealth’s English Language Arts and Mathematics standards.
The STE standards require the use and application of key English Language Arts and Mathematics standards needed to support science and technology/engineering learning. The three sets of standards overlap in meaningful and substantive ways, particularly in regards to practices (skills) that are common across all three, and offer an opportunity for all students to better apply and learn science and technology/engineering.

The Standards are Outcomes
The standards are outcomes, or goals, that reflect what a student should know and be able to do. They do not dictate the manner or methods by which the standards are taught. The standards are written in a way that expresses the concept and skills to be achieved and demonstrated by students but leaves curricular and instructional decisions to districts, school and teachers. The standards are not a set of instructional activities or assessment tasks. They are statements of what students should be able to do as a result of instruction.

In particular, it is important to note that the scientific and engineering practices are not teaching strategies -- they are important learning goals in their own right; they are skills to be learned as a result of instruction. Coupling practice with content gives the context for performance, whereas practices alone are activities and content alone is memorization. The scientific and engineering practices are represented across the standards. Curriculum and assessment must be developed in a way that builds students’ knowledge and ability toward the standards. As the standards are performances meant to be accomplished at the conclusion of instruction, quality instruction will have students engage in several practices throughout instruction. Teachers have the flexibility to arrange the standards in any order within a grade level to suit the needs of students and science programs. The use of various applications of science, such as biotechnology, clean energy, medicine, forensics, agriculture, or robotic, would nicely facilitate student interest and demonstrate how the standards are applied in real world contexts.

The term “practices” is used in the standards instead of a term such as “inquiry” or “skills” to emphasize that the practices are outcomes to be learned, not the method of instruction. The term “inquiry” in particular has so often been used to refer to an instructional approach as well as the skills to be learned that most readers cannot separate the two uses. So the terms practices denotes the skills to be learned as a result of instruction, whether that instruction is inquiry-based or not. Students cannot comprehend scientific practices, nor fully appreciate the nature of scientific knowledge itself, without learning the science and engineering practices.

It is also important to note that the standards identify the most essential material for students to know and do. The standards are not intended to represent an exhaustive list of all that could be included in a student’s science education nor should they prevent students from going beyond the standards where appropriate.

Structural features of the standards
The coding system used for the standards is the coding system used for the Next Generation Science Standards (NGSS). As with the titles, the first digit indicates a grade (Pre-K to grade 5), or specifies middle school (MS) or high school (HS). The next alpha-numeric code specifies the discipline, core idea and sub-idea. Finally, the number at the end of each code indicates the particular standards which integrate a disciplinary core idea and a practice. For those standards that are not aligned to NGSS (additional standards) an “(MA)” has been added to the code. The intent is to keep consistent coding to allow Massachusetts educators access to any resources developed nationally that are aligned to NGSS. While this does occasionally result in standards that appear to not be in sequence or skip a number, the benefits of maintaining consistency with NGSS outweighed the value of renumbering the standards.
Additionally, the order in which the standard in each discipline is listed does not imply the order of teaching or the instructional sequence.

Also consistent with NGSS, many standards include *clarification statements*, which supply examples or additional clarification to the performance expectations, and *assessment boundary* statements which are meant to specify limits to large-scale assessment. These are not intended to limit or constrain curriculum or classroom instruction; they are mean to clarify the expectations for student performance.

The use of an “*” at the end of some standards designates those standards that have an engineering design application. This is also consistent with NGSS.

Finally, unlike NGSS, some standards presented here may have multiple performances or multiple parts. There are some standards that needed additional statements or components to convey the richness of expected student outcomes.

[This section draws from and is an adaptation of NGSS Appendix A.]
Comments about the foundation boxes
While the performance expectations can stand alone, a more coherent and complete view of what students should be able to do comes when the performance expectations are viewed in tandem with the contents of the foundation boxes that lie just below the performance expectations. These three boxes include the practices, core disciplinary ideas, and crosscutting concepts, derived from the Framework, that were used to construct this set of performance expectations.

Disciplinary Core Ideas (DCIs). The orange box in the middle includes statements that are taken from the Framework about the most essential ideas in the major science disciplines that all students should understand during 13 years of school. Including these detailed statements was very helpful to the NGSS writing team as they analyzed and “unpacked” the disciplinary core ideas and sub-ideas to reach a level that is helpful in describing what each student should understand about each sub-idea at the end of grades 2, 5, 8, and 12. Although they appear in paragraph form in the Framework, here they are bulleted to be certain that each statement is distinct.

Science and Engineering Practices. The blue box on the left includes just the science and engineering practices used to construct the performance expectations in the box above. These statements are derived from and grouped by the eight categories detailed in the Framework to further explain the science and engineering practices important to emphasize in each grade band. Most sets of performance expectations emphasize only a few of the practice categories; however, all practices are emphasized within a grade band. Teachers should be encouraged to utilize several practices in any instruction, and need not be limited by the performance expectation, which is only intended to guide assessment.

Connection Boxes
Three Connection Boxes, below the Foundation Boxes, are designed to support a coherent vision of the standards by showing how the performance expectations in each standard connect to other PEs in science, as well as to common core state standards. The three boxes include:

Connections to other DCIs in this grade level. This box contains the names of DCIs that have related disciplinary core ideas at the same grade level. For example, both Physical Science and Life Science performance expectations contain core ideas related to Photosynthesis, and could be taught in relation to one another. Ideas within the same main DCI as the performance expectation (e.g., PS1.C for HS-PS1-1) are not included in the connection box, nor are ideas within the same topic arrangement as a performance expectation (e.g., HS.ESS2.B for HS-ESS1-6).

Articulation of DCIs across grade levels. This box contains the names of DCIs that either 1) provide a foundation for student understanding of the core ideas in this performance expectation (usually at prior grade levels) or 2) build on the foundation provided by the core ideas in this performance expectations (usually at subsequent grade levels).

Connections to the Common Core State Standards. This box contains the coding and names of prerequisite or connected Common Core State Standards in English Language Arts & and Literacy and Mathematics that align to the performance expectations. For example, performance expectations that require student use of exponential notation will align to the corresponding CCSS mathematics standards. An effort has been made to ensure that the mathematical skills that students need for science were taught in a previous year where possible. Italicized performance expectation names indicate that the common core standard is not pre-requisite knowledge, but could be connected to that performance expectation.
Pre-K: Overview

The World Around Me

Pre-K students focus on experiencing and making observations of the world around them. They are beginning to learn about their own environment as they observe plants and animals, the moon and the sun, and the daily weather. They experience their world through their senses and body parts and begin to recognize that animals also use their senses and body parts to meet their basic needs. They are given opportunities in their play to investigate pitch and volume, shadow and light, liquids and solids, and how things move. They sort materials by simple observable properties such as texture and color. They share their understanding of these concepts through discussion as they develop their language and quantitative skills. Pre-K students build awareness of the wide variety of natural phenomena and processes in the world around them.

Pre K: Earth and Space Sciences

<table>
<thead>
<tr>
<th>PreK-ESS1. Earth’s Place in the Universe</th>
</tr>
</thead>
<tbody>
<tr>
<td>PreK-ESS1-1(MA). Demonstrate awareness that the moon can be seen in the daytime and at night, and of the different apparent shapes of the moon over a month. [Assessment Boundary: Assessment does not include names for moon phases or sequencing moon phases.]</td>
</tr>
<tr>
<td>PreK-ESS1-2(MA). Observe and use evidence to describe that the sun is in different places in the sky during the day.</td>
</tr>
</tbody>
</table>

Science and Engineering Practices

Asking Questions and Solving Problems/Designing Things (Engineering)
- Observe and ask questions about observable phenomena (objects, materials, organisms or events). (PreK-ESS1-1), (PreK-ESS1-2)

Constructing Explanations/Theories and Evaluating Solutions (Engineering)
- Look for and describe patterns and relationships. (PreK-ESS1-2)

Disciplinary Core Ideas

ESS1A. The Universe and Its Stars
- Patterns of the motion of the sun, moon, and stars in the sky can be observed, described, and predicted. (PreK-ESS1-1, PreK-ESS1-2)

Common Core State Standards Connections:
- ELA/Literacy – RI.PK.7 With prompting and support, describe important details from an illustration or photograph. (PreK-ESS1-2)
- MA.W.PK.2 Use a combination of dictating and drawing to explain information about a topic. (PreK-ESS1-2)

<table>
<thead>
<tr>
<th>PreK-ESS2. Earth’s Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>PreK-ESS2-1(MA). Raise questions and engage in discussions about how different types of local environments (including water) provide homes for different kinds of living things.</td>
</tr>
<tr>
<td>PreK-ESS2-2(MA). Observe and classify non-living materials, natural and human made, in their local environment.</td>
</tr>
<tr>
<td>PreK-ESS2-3(MA). Explore and describe different places water is found in the local environment.</td>
</tr>
<tr>
<td>PreK-ESS2-4(MA). Use simple instruments to collect and record data on elements of daily weather, including sun or clouds, wind, snow or rain, and higher or lower temperature.</td>
</tr>
<tr>
<td>PreK-ESS2-5(MA). Describe how local weather changes from day to day and over the seasons and recognize patterns in those changes. [Clarification Statement: Descriptions of the weather can include sunny, cloudy, rainy, warm, windy, and snowy.]</td>
</tr>
<tr>
<td>PreK-ESS2-6(MA). Understand the impact of weather on living things. [Clarification statement: Make connections between the weather and what they wear and can do and the weather and the needs of plants and animals for water and shelter.]</td>
</tr>
</tbody>
</table>

Science and Engineering Practices

Asking Questions and Solving Problems/Designing Things (Engineering)
- Observe and ask questions about observable phenomena (objects, materials, organisms or events). (PreK-ESS2-1)

Planning and Carrying Out Investigations
- Use their senses and simple tools to observe, gather, and record data (e.g., dictate, draw, photograph, write). (PreK-ESS2-2), (PreK-ESS2-3), (PreK-ESS2-4)

Constructing Explanations/Theories and Evaluating Solutions (Engineering)
- Look for and describe patterns and relationships. (PreK-ESS2-5)

Make Meaning from Experience and Data
- Apply their ideas to new situations (PreK-ESS2-6)

Disciplinary Core Ideas

- **ESS2.A: Earth Materials and Systems**
 - The materials on the land, provide homes for living things. (PreK-ESS2-1)
 - The materials on the land, provide homes for living things. (PreK-ESS2-1)

- **ESS2.B: Plate Tectonics and Large-Scale System Interactions**
 - Rocks, soils, and sand are present in most areas where plants and animals live. There may also be rivers, streams, lakes, and ponds. (PreK-ESS2-2)

- **ESS2.C: The Roles of Water in Earth’s Surface Processes**
 - Water is found in the ocean, rivers, lakes, and ponds. (PreK-ESS2-3)

- **ESS2.D: Weather and Climate**
 - Weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region at a particular time. People measure these conditions to describe and record the weather and to notice patterns over time. (PreK-ESS2-4), (PreK-ESS2-5)

Common Core State Standards Connections:
- Mathematics – MA.PK.CC.C.5 Use comparative language, such as more/less than, equal to, to compare and describe collections of objects. (PreK-ESS2-4)
- MA.CA.1 Identify relative positions of objects in space, and use appropriate language (e.g., beside, inside, next to, close to, above, below, apart). (PreK-ESS2-4)
- MA.PK.MD.B.8 Sort, categorize, and classify objects by more than one attribute. (PreK-ESS2-2)
- ELA/Literacy – MA.SL.PK.3 Ask and answer questions in order to seek help, get information, or clarify something that is not understood. (PreK-ESS2-1 and PreK-ESS3-1)
- MA.SL.PK.6 Speak audibly and express thoughts, feelings, and ideas. (PreK-ESS2-1, PreK-ESS3-1, and PreK-ESS3-2)
PreK-ESS3. Earth and Human Activity

PreK-ESS3-1 (MA). Engage in discussion and raise questions using examples about local resources (including soil and water) humans use to meet their needs.

PreK-ESS3-2 (MA). Observe and discuss the impact of people’s activities on the local environment.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engaging in Discussion/Argument from Evidence</td>
<td>ESS3.A: Natural Resources</td>
</tr>
<tr>
<td>• Engage in discussion before, during and after investigations. (PreK-ESS3-1), (PreK-ESS3-2)</td>
<td>• Living things need water, air, and resources from the land, and they try to live in places that have the things they need. Humans use natural resources for everything they do: for example, they use soil and water to grow food, wood to burn to provide heat and clay and wood to build shelters. (PreK-ESS3-1)</td>
</tr>
<tr>
<td>Obtain, Evaluate, and Talk About Information</td>
<td>ESS3.C: Human Impacts on Earth Systems</td>
</tr>
<tr>
<td>• Use first hand interaction with objects and organisms, media, and books to gather information. (PreK-ESS3-2)</td>
<td>• Things that people do to live comfortably can affect the world around them. But they can make choices that reduce their impacts on the land, water, air, and other living things—for example, by reducing trash through reuse and recycling. (PreK-ESS3-2)</td>
</tr>
</tbody>
</table>

Common Core State Standards Connections:

- **ELA/Literacy - MA.SL.PK.3**
 Ask and answer questions in order to seek help, get information, or clarify something that is not understood. (PreK-ESS2-1 and PreK-ESS3-1)

- **MA.SL.PK.6**
 Speak audibly and express thoughts, feelings, and ideas. (PreK-ESS2-1, PreK-ESS3-1, and PreK-ESS3-2)
PreK: Life Science

Science and Engineering Practices

<table>
<thead>
<tr>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS1.A: Structure and Function</td>
</tr>
<tr>
<td>▪ All organisms have external parts. Different animals use their body parts in different ways to see, hear, grasp objects, protect themselves, move from place to place, and seek, find, and take in food, water and air. Plants also have different parts (roots, stems, leaves, flowers, fruits) that help them survive, grow, and produce more plants. (PreK-LS1-1)</td>
</tr>
<tr>
<td>LS1.B: Growth and Development of Organisms</td>
</tr>
<tr>
<td>▪ Plants and animals have predictable characteristics at different stages of development. Plants and animals grow and change. (PreK-LS1-2), (PreK-LS1-3)</td>
</tr>
<tr>
<td>LS1.D: Information Processing</td>
</tr>
<tr>
<td>▪ Animals have body parts that capture and convey different kinds of information needed for growth and survival—for example, eyes for light, ears for sounds, and skin for temperature or touch. (PreK-LS1-4)</td>
</tr>
</tbody>
</table>

PreK-LS1 From Molecules to Organisms: Structures and Processes

PreK-LS1-1(MA). Compare, using descriptions and drawings, the external body parts of animals (including humans) and plants and explain functions of some of the observable body parts. [Clarification Statement: Examples can include comparison of humans having two legs and horses four, but both use legs to move.]

PreK-LS1-2(MA). Recognize that all plants and animals grow and change over time.

PreK-LS1-3(MA). Explain that most animals have 5 senses they use to gather information about the world around them.

PreK-LS1-4(MA). Use their five senses in their exploration and play to gather information.

Science and Engineering Practices

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing and Using Models</td>
</tr>
<tr>
<td>▪ Represent (e.g., draw, use blocks, use clay, make a collage) findings. (PreK-LS1-1)</td>
</tr>
<tr>
<td>Constructing Explanations/Theories and Evaluating Solutions</td>
</tr>
<tr>
<td>▪ Look for and describe patterns and relationships (PreK-LS1-2), (PreK-LS1-3)</td>
</tr>
<tr>
<td>Obtaining, Evaluating, and Talking about Information</td>
</tr>
<tr>
<td>▪ Document experiences and thinking to communicate with others. (PreK-LS1-4)</td>
</tr>
<tr>
<td>Planning and Carrying Out Investigations</td>
</tr>
<tr>
<td>▪ Use their senses and simple tools to observe, gather, and record data (e.g., dictate, draw, photograph, write). (PreK-LS1-4)</td>
</tr>
</tbody>
</table>

PreK-LS2 Ecosystems: Interactions, Energy, and Dynamics

PreK-LS2-1(MA). Use evidence from animals and plants to define several characteristics of living things that distinguish them from non-living things.

PreK-LS2-2(MA). Using evidence from the local environment explain how familiar plants and animals meet their needs where they live. [Clarification Statement: Basic needs include water, food, air, shelter, and, for most plants, light. Examples of evidence can include squirrels gathering nuts for the winter and plants growing in the presence of sun and water. The local environment includes the area around the student's school, home, or adjacent community.]

PreK-LS2-3(MA). Give examples from the local environment of how animals and plants are dependent on one another to meet their basic needs.

Science and Engineering Practices

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engaging in Discussion/ Argument from Evidence</td>
</tr>
<tr>
<td>▪ Support thinking with evidence. (PreK-LS2-1)</td>
</tr>
<tr>
<td>Constructing Explanations/Theories and Evaluating Solutions</td>
</tr>
<tr>
<td>▪ Construct theories based in experience about what might be going on. (PreK-LS2-2)</td>
</tr>
<tr>
<td>▪ Look for and describe patterns and relationships (PreK-LS2-3)</td>
</tr>
</tbody>
</table>

PreK-LS3 Variation of Traits

PreK-LS3-1(MA). Use observations to explain that young plants and animals are like but not exactly like their parents. [Clarification Statement: Examples of observations include puppies that look similar but not exactly the same as their parents.]

PreK-LS3-2(MA). Use observations to recognize differences and similarities among themselves and their friends.

Science and Engineering Practices

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engaging in Discussion/ Argument from Evidence</td>
</tr>
<tr>
<td>▪ Support thinking with evidence. (PreK-LS3-1)</td>
</tr>
<tr>
<td>Constructing Explanations/Theories and Evaluating Solutions</td>
</tr>
<tr>
<td>▪ Look for and describe patterns and relationships. (PreK-LS3-1), (PreK-LS3-2)</td>
</tr>
</tbody>
</table>

Disciplinary Core Ideas

- **LS3.A: Inheritance of Traits**
 ▪ Young animals are very much, but not exactly, like their parents and also resemble other animals of the same kind. (PreK-LS3-1), (PreK-LS3-2)
PreK: Physical Sciences

PreK-PS1. Matter and Its Interactions

PreK-PS1-1(MA). Raise questions and investigate the differences between liquids and solids and develop awareness that a liquid can become a solid and vice versa.

PreK-PS1-2(MA). Investigate natural and human-made objects to describe, compare, and classify objects based on observable physical characteristics, uses, and whether something is manufactured or occurs in nature.

PreK-PS1-3(MA). Differentiate between the properties of an object and those of the material of which it is made.

PreK-PS1-4(MA). Recognize through investigation that physical objects and materials can change under different circumstances. [Clarification Statement: Changes include building up or breaking apart, mixing, dissolving, or changing state.]

Science and Engineering Practices

<table>
<thead>
<tr>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Different kinds of matter exist (e.g., wood, metal, water), and many of them can be either solid or liquid, depending on temperature. (PreK-PS1-1)</td>
</tr>
<tr>
<td>• Objects and materials can be described and classified by their observable properties (e.g., visual, aural, textual), by their uses, and by whether they occur naturally or are manufactured. Different properties are suited to different purposes. A great variety of objects can be built up from a small set of pieces (e.g., blocks, construction sets). Objects or samples of a substance can be weighed, and their size can be described and measured. (Boundary: volume is introduced only for liquid measure.) (PreK-PS1-2), (PreK-PS1-3)</td>
</tr>
<tr>
<td>PS1.B: Chemical Reactions</td>
</tr>
<tr>
<td>• Materials and objects can change under different circumstances. Sometimes these changes are reversible (e.g., melting and freezing, taking something apart and putting it back together), and sometimes they are not (e.g., baking a cake, burning fuel, mixing certain substances.) (PreK-PS1-4)</td>
</tr>
</tbody>
</table>

PreK-PS2. Motion and Stability: Forces and Interactions

PreK-PS2-1(MA). Using evidence, discuss ideas about what is making something move the way it does and how some movements can be controlled.

PreK-PS2-2(MA). Through experience, develop awareness of factors that influence whether things stand or fall. (Clarification Statement: Examples of factors in children's construction play include using a broad foundation when building, considering the strength of materials, and using balanced weight distribution in a block building.)

Science and Engineering Practices

<table>
<thead>
<tr>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS2.A: Forces and Motion</td>
</tr>
<tr>
<td>• Objects pull or push each other when they collide or are connected. Pushes and pulls can have different strengths and directions. Pushing or pulling on an object can change the speed or direction of its motion and can start or stop it. (PreK-PS2-1), (PreK-PS2-2)</td>
</tr>
<tr>
<td>PS2.B: Types of Interactions</td>
</tr>
<tr>
<td>• When objects touch or collide, they push on one another and can change motion or shape. (PreK-PS2-2)</td>
</tr>
</tbody>
</table>

PreK-PS4. Waves and Their Applications in Technologies for Information Transfer

PreK-PS4-1(MA). Investigate sounds made by different objects and materials and discuss explanations about what is causing the sounds. Through play and investigations, identify ways to manipulate different objects and materials that make sound to change volume and pitch.

PreK-PS4-2(MA). Connect daily experience and investigations to demonstrate the relationships between the size and shape of shadows, the objects creating the shadow, and the light source.

Science and Engineering Practices

<table>
<thead>
<tr>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS4.A: Wave Properties</td>
</tr>
<tr>
<td>• Sound can make matter vibrate, and vibrating matter can make sound. Different objects and materials make different sounds. The pitch and volume of sound can be changed. (PreK-PS4-1), (PreK-PS4-2)</td>
</tr>
<tr>
<td>PS4.B: Electromagnetic Radiation</td>
</tr>
<tr>
<td>• Some materials allow light to pass through them, others allow only some light through, and others block all the light and create a dark shadow on any surface beyond them (i.e., on the other side from the light source), where the light cannot reach. The size and shape of a shadow depend on several factors (i.e., the orientation of the object, the location of the light source, and the distances between light source, object, and shadow. (PreK-PS4-2)</td>
</tr>
</tbody>
</table>
Kindergarten: Overview

Reasons for Change
In kindergarten, students build on early experiences observing the world around them as they continue to make observations that are more quantitative in nature and help them identify why some changes occur. Students begin to learn to use these observations as evidence to support a claim through growing language skills. They learn that all animals and plants need food, water, and air to grow and thrive and that the fundamental difference between plants and animals is a plants ability to make its own food. Students build their quantitative knowledge of temperature in relationship to the weather and its effect on different kinds of materials. They observe that the amount of sunlight shining on a surface causes a temperature change and they design a structure to reduce the warming effects of sunlight. They investigate motions of objects by changing the strength and direction of pushes and pulls. They provide examples of plants and animals that can change their environment through their interactions with it. In kindergarten science students begin to identify reasons for changes in some common phenomena.

Kindergarten: Earth and Space Sciences

K-ESS2 Earth's Systems

| K-ESS2-1. Use and share quantitative observations of local weather conditions to describe patterns over time. | [Clarification Statement: Examples of quantitative observations could include numbers of sunny, windy and rainy days in a month, and relative temperature.] [Assessment Boundary: Assessment of quantitative observations limited to whole numbers.] |
| K-ESS2-2. Construct an argument supported by evidence for how plants and animals (including humans) can change the environment. | [Clarification Statement: Examples of plants and animals changing their environment could include a squirrel digging holes in the ground and tree roots that break concrete.] |

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*.

Science and Engineering Practices

<table>
<thead>
<tr>
<th>Analyzing and Interpreting Data</th>
<th>Engaging in Argument from Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. (K-ESS2-1)</td>
<td>Construct an argument with evidence to support a claim. (K-ESS2-2)</td>
</tr>
</tbody>
</table>

Common Core State Standards Connections:

Mathematics -

K.CC.B.5	Count to answer “how many?” questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration: given a number from 1–20, count out that many objects. (K-ESS2-1)
K.CC.C.6	I identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies. (K-ESS2-1)
MA.PK.MD.A.2	Compare the attributes of length and weight for two objects, including longer/shorter, same length; heavier/lighter, same weight; holds more/less, holds the same amount. (K-ESS2-1)
K.MD.B.3	Classify objects into given categories; count the number of objects in each category and sort the categories by count. (K-ESS2-1)
W.K.2	Use a combination of drawing, dictating, and writing to compose informative/explanatory texts in which they name what they are writing about and supply some information about the topic. (K-ESS2-2)
SL.K.5	Add drawings or other visual displays to descriptions as desired to provide additional detail. (K-ESS2-2)

K-ESS3 Earth and Human Activity

| K-ESS3-2. Obtain information about the purpose of weather forecasting to prepare for, and respond to, different types of local weather. |
| K-ESS3-3. Communicate solutions to reduce the amount of natural resources an individual uses.* | [Clarification Statement: Examples of solutions could include reusing paper to reduce the number of trees cut down and recycling cans and bottles to reduce the amount of plastic or metal used.] |

[Note: K-ESS3-1 from NGSS is not included.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*.

Disciplinary Core Ideas

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Weather scientists forecast severe weather so that the communities can prepare for and respond to these events. (K-ESS3-2)</td>
<td>Things that people do to live comfortably can affect the world around them. But they can make choices that reduce their impacts on the land, water, air, and other living things, for example, by reducing trash through reuse and recycling. (K-ESS3-3)</td>
</tr>
</tbody>
</table>

Common Core State Standards Connections:

ELA/Literacy -

RI.K.2	With prompting and support, identify the main topic and retell key details of a text. (K-ESS3-2)
SL.K.5	Add drawings or other visual displays to descriptions as desired to provide additional detail. (K-ESS3-3)
SL.K.6	Speak audibly and express thoughts, feelings, and ideas clearly. (K-ESS3-3)

Massachusetts Draft Revised Science and Technology/Engineering Standards, December 2013

Available at www.doe.mass.edu/STEM/review.html; Submit input to mathscitenceech@doe.mass.edu
Kindergarten: Life Science

<table>
<thead>
<tr>
<th>K-LS1</th>
<th>From Molecules to Organisms: Structures and Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-LS1-1</td>
<td>Observe and communicate that animals (including humans) and plants need food, water, and air to survive. Animals get food from plants or other animals. Plants make their own food and need light to live and grow.</td>
</tr>
<tr>
<td>K-LS1-2(MA)</td>
<td>Recognize that all plants and animals have a life cycle: a. most plants begin as seeds, develop and grow, make more seeds, and die; and b. animals are born, develop and grow, produce young, and die.</td>
</tr>
</tbody>
</table>

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

- **Analyzing and Interpreting Data**
 - Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. (K-LS1-1)
 - Communicate information or design ideas and/or solutions with others in oral and/or written forms using models, drawings, writing, or numbers that provide detail about scientific ideas, practices, and/or design ideas. (K-LS1-1)

Disciplinary Core Ideas

- **LS1.C: Organization for Matter and Energy Flow in Organisms**
 - All animals need food in order to live and grow. They obtain their food from plants or from other animals. Plants need water and light to live and grow. (K-LS1-1)

Common Core State Standards Connections:
- **ELA/Literacy – SL.K.5** Add drawings or other visual displays to descriptions as desired to provide additional detail. (K-LS1-1)
Kindergarten: Physical Science

K-PS1 Matter and its Interactions

K-PS1-1(MA). Design and conduct an experiment to test the idea that different kinds of materials can be a solid or liquid depending on temperature.

[Clarification Statement: Materials chosen must exhibit solid and liquid states in a reasonable temperature range for Kindergarten students (e.g., 0-80°F), such as water, crayons or glue sticks.] [Assessment Boundary: Only a qualitative description of temperature, such as hot, warm, and cool, is expected.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
</table>
| Planning and Carrying Out Investigations
 - Make observations (firsthand or from media) and/or measurements to collect data that can be used to make comparisons. (K-PS1) | PS1.A: Structure and Properties of Matter
 - Different kinds of matter exist (e.g., wood, metal, water), and many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties. (K-PS1) |

Common Core State Standards Connections:

- **Mathematics –**
 - K.CC.B.4 Understand the relationship between numbers and quantities; connect counting to cardinality. (K-PS1-1)
 - K.MD.B.3 Classify objects into given categories; count the number of objects in each category and sort the categories by count. (K-PS1-1)

K-PS2 Motion and Stability: Forces and interactions

K-PS2-1. Compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.

[Clarification Statement: Examples of pushes or pulls could include a string attached to an object being pulled, a person pushing an object, a person stopping a rolling ball, and two objects colliding and pushing on each other.] [Assessment Boundary: Assessment is limited to different relative strengths or different directions, but not both at the same time. Assessment does not include non-contact pushes or pulls such as those produced by magnets.]

[Note: K-PS2-2 from NGSS is not included.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
</table>
| Planning and Carrying Out Investigations
 - Make observations (firsthand or from media) and/or measurements to collect data that can be used to make comparisons. (K-PS1-1) | PS2.A: Forces and Motion
 - Pushes and pulls can have different strengths and directions. (K-PS2-1)
 - Pushing or pulling on an object can change the speed or direction of its motion and can start or stop it. (K-PS2-1) |
| **PS2.B: Types of Interactions**
 - When objects touch or collide, they push on one another and can change motion. (K-PS2-1) | PS3.A: Relationship Between Energy and Forces
 - A bigger push or pull makes things go faster. (Secondary to K-PS2-1) |
| **PS2.C: Classification of Materials**
 - Different kinds of matter exist (e.g., wood, metal, water), and many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties. (K-PS1) | |

Common Core State Standards Connections:

- **Mathematics –**
 - K.MD.A.1 Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object. (K-PS2-1)
 - K.MD.A.2 Directly compare two objects with a measurable attribute in common, to see which object has “more of”/“less of” the attribute, and describe the difference. (K-PS2-1)

K-PS3 Energy

K-PS3-1. Make observations to determine that sunlight warms materials on Earth’s surface.

[Clarification Statement: Examples of materials on Earth’s surface could include sand, soil, rocks, and water] [Assessment Boundary: Assessment of temperature is limited to relative measures such as warmer/cooler.]

K-PS3-2. Use tools and materials to design and build a prototype of a structure that will reduce the warming effect of sunlight on an area.

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
</table>
| Planning and Carrying Out Investigations
 - Make observations (firsthand or from media) to collect data that can be used to make comparisons. (K-PS3-1) | PS3.A: Energy and Energy Transfer
 - Sunlight warms Earth’s surface. (K-PS3-1) |
| Constructing Explanations and Designing Solutions
 - Use tools and materials provided to design and build a device that solves a specific problem or a solution to a specific problem. (K-PS3-2) | |

Common Core State Standards Connections:

- **Mathematics –**
 - K.MD.A.2 Directly compare two objects with a measurable attribute in common, to see which object has “more of”/“less of” the attribute, and describe the difference. (K-PS3-1)
Grade 1: Overview

Describing Patterns

In grade 1, students have more fluency with language, number sense and inquiry skills. This allows students to describe patterns of motion between the sun, moon, and stars in relation to the Earth. From this understanding they can identify seasonal patterns from sunrise and sunset data that will allow them to predict future patterns. Building from their experiences in Pre-K and kindergarten observing and describing daily weather, they can now examine seasonal data of temperature and rainfall to describe patterns over time. Grade 1 students investigate sound and light through various materials. They describe patterns in how light passes through and sounds differ from different types of materials. Based on this they design and build a device to send a signal. Students compare the ways different animals and plants use their body parts and senses to do the things they need to do to grow and survive including typical ways parents keep the young safe so they will survive to adulthood. They notice that though there are differences between plants or animals of the same type, the similarities of behavior and appearance are what allow us to identify them as belonging to a group. Grade 1 students begin to understand the power of patterns to predict future events in the natural and designed world.

Grade 1: Earth and Space Sciences

1-ESS1 Earth’s Place in the Universe

1-ESS1-1. Use observations of the sun, moon, and stars to describe that each appears to rise in one part of the sky, appears to move across the sky, and appears to set.

1-ESS1-2. Analyze provided data to identify relationships among seasonal patterns of change, including sunrise and sunset time changes, seasonal temperature and rainfall or snowfall patterns, and seasonal changes to the environment.

[Clarification Statement: Examples of seasonal changes to the environment can include foliage changes, bird migration, and differences in amount of insect activity.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

- **Science and Engineering Practices**
 - Analyzing and Interpreting Data
 - Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. (1-ESS1-1), (1-ESS1-2)

- **Disciplinary Core Ideas**
 - ESS1.A: The Universe and its Stars
 - Patterns of the motion of the sun, moon, and stars in the sky can be observed, described, and predicted. (1-ESS1-1)
 - ESS1.B: Earth and the Solar System
 - Seasonal patterns of sunrise and sunset can be observed, described, and predicted. (1-ESS1-2)

Common Core State Standards Connections:
- Mathematics - 1.MD.B.3 Tell and write time in hours and half hours using analog and digital clocks. (1-ESS1-2)
- 1.MD.C.4 Organizes, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another. (1-ESS1-2)
Grade 1: Life Science

<table>
<thead>
<tr>
<th>1-LS1</th>
<th>From Molecules to Organisms: Structures and Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-LS1-1. Use evidence to explain that: a. different animals use their body parts and senses in different ways to see, hear, grasp objects, protect themselves, move from place to place, and seek, find, and take in food, water and air; and b. plants have roots, stems, leaves, flowers and fruits that are used to take in nutrients, water and air, produce food (sugar), and make new plants. [Assessment Boundary: Descriptions are not expected to include mechanisms.]</td>
<td></td>
</tr>
</tbody>
</table>

| **1-LS1-2.** Obtain information to compare ways in which the behavior of different animal parents and their offspring help the offspring to survive. [Clarification Statement: Examples of behaviors could include the signals that offspring make (such as crying, cheeping, and other vocalizations) and the responses of the parents (such as feeding, comforting, and protecting the offspring):] |

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*.

Science and Engineering Practices

<table>
<thead>
<tr>
<th>Constructing Explanations and Designing Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Constructing explanations and designing solutions in K–2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions. (1-LS1-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obtaining, Evaluating, and Communicating Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Read grade-appropriate texts and use media to obtain scientific information to determine patterns in the natural world. (1-LS1-2)</td>
</tr>
</tbody>
</table>

Disciplinary Core Ideas

<table>
<thead>
<tr>
<th>LS1.A: Structure and Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>- All organisms have body parts. Different animals use their body parts in different ways to see, hear, grasp objects, protect themselves, move from place to place, and seek, find, and take in food, water and air. Plants also have different parts (roots, stems, leaves, flowers, fruits) that help them survive and grow. (1-LS1-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LS1.B: Growth and Development of Organisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>- In many kinds of animals, parents and the offspring themselves engage in behaviors that help the offspring to survive. (1-LS1-2)</td>
</tr>
</tbody>
</table>

Common Core State Standards Connections:

<table>
<thead>
<tr>
<th>ELA/Literacy -</th>
</tr>
</thead>
<tbody>
<tr>
<td>RI.1.5 Know and use various text features (e.g., headings, tables of contents, glossaries, electronic menus, icons) to locate key facts or information in a text. (K-LS1-1)</td>
</tr>
<tr>
<td>RI.1.6 Distinguish between information provided by pictures or other illustrations and information provided by the words in a text. (K-LS1-1 AND 1-LS3-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1-LS3</th>
<th>Heredity: Inheritance and Variation of Traits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-LS3-1. Use information from observations (first-hand and from media) to identify similarities and differences among individual plants or animals of the same kind. [Clarification Statement: Examples of observations could include leaves from the same kind of plant are the same shape but can differ in size.] [Assessment Boundary: Assessment does not include inheritance or animals that undergo metamorphosis or hybrids.]</td>
<td></td>
</tr>
</tbody>
</table>

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*.

Science and Engineering Practices

<table>
<thead>
<tr>
<th>Constructing Explanations and Designing Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena. (1-LS3-1)</td>
</tr>
</tbody>
</table>

Disciplinary Core Ideas

<table>
<thead>
<tr>
<th>LS3.B: Variation of Traits</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Individuals of the same kind of plant or animal are recognizable as similar but can also vary in many ways. (1-LS3-1)</td>
</tr>
</tbody>
</table>

Common Core State Standards Connections:

<table>
<thead>
<tr>
<th>ELA/Literacy -</th>
</tr>
</thead>
<tbody>
<tr>
<td>RI.1.6 Distinguish between information provided by pictures or other illustrations and information provided by the words in a text. (K-LS1-1 AND 1-LS3-1)</td>
</tr>
</tbody>
</table>
Grade 1: Physical Science

1-PS4 Waves and their Applications in Technologies for Information Transfer

1-PS4.1. Demonstrate that vibrating materials can make sound and that sound can make materials vibrate. [Clarification Statement: Examples of vibrating materials that make sound could include tuning forks, a stretched string or rubber band, and a drum head. Examples of how sound can make matter vibrate could include holding a piece of paper near a speaker making sound and holding an object near a vibrating tuning fork.]

1-PS4.3. Determine the effect of placing materials that allow light to pass through them, allow only some light through them, block all the light, or redirect light when put in the path of a beam of light. [Clarification Statement: Effects can include some or all light passing through, creation of a shadow, or redirecting light. (Assessment Boundary: Assessment does not include quantitative measures.)]

1-PS4.4. Use tools and materials to design and build a device that uses light or sound to send a signal over a distance.* [Clarification Statement: Examples of devices could include a light source to send signals, paper cup and string “telephones,” and a pattern of drum beats. (Assessment Boundary: Assessment does not include technological details for how communication devices work.)]

[Note: 1-PS4.2 from NGSS is not included.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices
- Planning and Carrying Out Investigations
 - Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence to answer a question. (1-PS4-1)
- Constructing Explanations and Designing Solutions
 - With guidance, plan and conduct an investigation in collaboration with peers. (1-PS4-3)
 - Use tools and materials provided to design a device that solves a specific problem. (1-PS4-4)

Disciplinary Core Ideas
- PS4.A: Waves and their Applications in Technologies for Information Transfer
 - Sound can make matter vibrate, and vibrating matter can make sound. (1-PS4-1)
 - PS4.B: Electromagnetic Radiation
 - Some materials allow light to pass through them, others allow only some light through and others block all the light and create a dark shadow on any surface beyond them, where the light cannot reach. Mirrors can be used to redirect a light beam. (Boundary: The idea that light travels from place to place is developed through experiences with light sources, mirrors, and shadows, but no attempt is made to discuss the speed of light.) (1-PS4-3)
 - PS4.C: Information Technologies and Instrumentation
 - People also use a variety of devices to communicate (send and receive information) over long distances. (1-PS4-4)

Grade 1 K-2-ETS1 Engineering Design

K-2-ETS1.1. Ask questions, make observations, and gather information about a situation people want to change in order to define a simple design problem that can be solved by developing or improving an object or tool.*

K-2-ETS1.2. Generate multiple solutions to a design problem and make a drawing (plan) to represent one or more of the solutions.* [NOTE: K-2-ETS1.3 is found in Grade 2]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices
- Asking Questions and Defining Problems
 - Define a simple problem that can be solved through the development of a new or improved object or tool. (K-2-ETS1-1)
- Developing and Using Models
 - Develop a simple model based on evidence to represent a proposed object or tool. (K-2-ETS1-2)

Disciplinary Core Ideas
- ETS1.A: Defining and Delimiting Engineering Problems
 - A situation that people want to change or create can be approached as a problem to be solved through engineering. (K-2-ETS1-1)
 - Asking questions, making observations, and gathering information are helpful in thinking about problems. (K-2-ETS1-1)
- ETS1.B: Developing Possible Solutions
 - Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem's solutions to other people. (K-2-ETS1-2)
Grade 2: Overview

Wholes and Parts
As students grow in their ability to speak, read, write and reason mathematically, they also grow in their ability to grapple with larger systems and the parts that make them up. In grade 2, students start to look beyond the structures of individual plants and animals to looking at the environment in which the plants and animals live as a provider of the food, water, and shelter that the organisms need. They learn that water is found everywhere on Earth and takes different forms and shapes. They map landforms and bodies of water and observe that flowing water and wind shapes these landforms. Grade 2 students use their observation skills gained in earlier grades to classify materials based on similar properties and functions. They gain experience testing different materials to collect and then analyze data for the purpose of determining which materials are the best for a specific function. They construct large objects from smaller pieces and, conversely, learn that when materials are cut into the smallest possible pieces, they still exist as the same material that has weight. These investigations of how parts relate to the whole provide a key basis for understanding systems in later grades.

Grade 2: Earth and Space Sciences

2-ESS1 Earth’s Place in the Universe
[Note: 2-ESS1-1 from NGSS is not included]
The performance expectations above were developed using the following elements from the NRC document: A Framework for K-12 Science Education:

Science and Engineering Practices

Disciplinary Core Ideas

2-ESS2 Earth’s Systems
2-ESS2-1. Compare the effectiveness of multiple solutions designed to slow or prevent wind or water from changing the shape of the land.* [Clarification Statement: Solutions to be compared could include different designs of dikes and windbreaks to hold back wind and water, and different designs for using shrubs, grass, and trees to hold back the land. Solutions can be generated or provided.]

2-ESS2-2. Map the shapes and types of landforms and bodies of water in an area. [Clarification Statement: Examples of types of landforms can include hills, valleys, river banks, and dunes. Examples of water bodies can include streams, ponds, and rivers.] [Assessment Boundary: Assessment does not include quantitative scaling in models.]

2-ESS2-3. Use examples obtained from informational sources to explain that water is found in the ocean, rivers and streams, lakes and ponds, and may be solid or liquid.

2-ESS2-4(MA). Observe how blowing wind and flowing water can move Earth materials from one place to another and change the shape of a landform. [Clarification Statement: Examples of types of landforms can include hills, valleys, river banks, and dunes.]

The performance expectations above were developed using the following elements from the NRC document: A Framework for K-12 Science Education:

Science and Engineering Practices

Disciplinary Core Ideas

Common Core State Standards Connections:

ELA/Literacy - RI.2.7 Explain how specific images (e.g., a diagram showing how a machine works) contribute to and clarify a text. (2-ESS2-3)
Grade 2: Life Science

2-LS2 Ecosystems: Interactions, Energy, and Dynamics

2-LS2-3(MA). Develop and use models to compare how plants and animals depend on their surroundings and other living things to meet their needs in the places they live. [Clarification Statement: Animals need food, water, air, shelter, and favorable temperature; plants need sufficient light, water, minerals, favorable temperature and, animals or other mechanisms to disperse seeds.]

[Note: 2-LS2-1 is included in other standards, including K-LS1-1 and 2-LS2-3(MA).]

[Note: 2-LS2-2 from NGSS are not included.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

<table>
<thead>
<tr>
<th>Developing and Using Models</th>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Develop a simple model based on evidence to represent a proposed object or tool. (2-LS2-3)</td>
<td>- LS2.A: Interdependent Relationships in Ecosystems</td>
</tr>
<tr>
<td></td>
<td>- Animals depend on their surroundings to get what they need, including food, water, shelter, and a favorable temperature.</td>
</tr>
<tr>
<td></td>
<td>- Animals depend on plants or other animals for food. They use their senses to find food and water, and they use their body parts to gather, catch, eat, and chew the food.</td>
</tr>
<tr>
<td></td>
<td>- Plants depend on air, water, minerals (in the soil), and light to grow.</td>
</tr>
<tr>
<td></td>
<td>- Animals can move around, but plants cannot, and they often depend on animals for pollination or to move their seeds around. Different plants survive better in different settings because they have varied needs for water, minerals, and sunlight. (2LS2-3)</td>
</tr>
</tbody>
</table>

2-LS4 Biological Evolution: Unity and Diversity

2-LS4-1. Use texts and media to compare: a. different kinds of living things in an area, and b. differences in the kinds of living things living in different types of areas. [Clarification Statement: Examples of areas to compare might include temperate forest, desert, tropical rain forest, grassland, arctic, and aquatic.] [Assessment Boundary: Assessment does not include specific animal and plant names in specific areas.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

<table>
<thead>
<tr>
<th>Obtaining, Evaluating, and Communicating Information</th>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Read grade-appropriate texts and/or use media to obtain scientific and/or technical information to determine patterns in and/or evidence about the natural and designed world(s). (2-LS4-1)</td>
<td>- LS4.D: Biodiversity and Humans</td>
</tr>
<tr>
<td></td>
<td>- There are many different kinds of living things in any area, and they exist in different places on land and in water. (2-LS4-1)</td>
</tr>
</tbody>
</table>

Common Core State Standards Connections:

ELA/Literacy -

RI.2.5 Know and use various text features (e.g., captions, bold print, subheadings, glossaries, indexes, electronic menus, icons) to locate key facts or information in a text efficiently. (2-LS4-1)

RI.2.7 Explain how specific images (e.g., a diagram showing how a machine works) contribute to and clarify a text. (2-LS4-1)
Grade 2: Physical Science

2-PS1 Matter and its Interactions

2-PS1.1. Describe and classify different kinds of materials by observable properties of color, strength, flexibility, hardness, texture, and absorbency.

2-PS1.2. Test different materials and analyze the data obtained to determine which materials have the properties that are best suited for an intended purpose.* [Clarification Statement: Examples of properties could include, color, strength, flexibility, hardness, texture, and absorbency.] [Assessment Boundary: Assessment is limited to qualitative and relative observations.]

2-PS1.3. Analyze a variety of evidence to conclude that when a chunk of material is cut or broken into pieces, each piece is still the same material and, however small each piece is, has weight. Show that the material properties of a small set of pieces do not change when the pieces are used to build larger objects. [Clarification Statement: Materials should be pure substances or microscopic mixtures that appear contiguous at observable scales. Examples of pieces could include blocks, building bricks, or other assorted small objects.]

2-PS1.4. Construct an argument with evidence that some changes to materials caused by heating or cooling can be reversed and some cannot. [Clarification Statement: Examples of reversible changes could include materials such as water and butter at different temperatures. Examples of irreversible changes could include cooking an egg, freezing a plant leaf, and burning paper.]

Science and Engineering Practices

Analyzing and Interpreting Data
- Analyze data from tests of an object or tool to determine if it works as intended. (2-PS1-2)

Constructing Explanations and Designing Solutions
- Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena. (2-PS1-3)

Engaging in Argument from Evidence
- Construct an argument with evidence to support a claim. (2-PS1-4)

Disciplinary Core Ideas

PS1.A: Structure and Properties of Matter
- Matter can be described and classified by its observable properties. (2-PS1-1)
- Different properties are suited to different purposes. (2-PS1-2)
- A great variety of objects can be built up from a small set of pieces. (2-PS1-3, 2-PS1-5)
- Objects or samples of a substance can be weighed, and their size can be described and measured. (2-PS1-5)

PS1.B: Chemical Reactions
- Heating or cooling a substance may cause changes that can be observed. Sometimes these changes are reversible, and sometimes they are not. (2-PS1-4)

Grade 2: Physical Science

2-PS3 Energy

2-PS3.1(MA). Design and conduct an experiment to show the effects of friction on the relative temperature and speed of objects that rub against each other. [Clarification Statement: Examples could include an object sliding on rough vs. smooth surfaces.] [Assessment Boundary: Observations of temperature and speed are qualitative.]

Science and Engineering Practices

Planning and Carrying Out Investigations
- Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence to answer a question. (2-PS3-1)

Disciplinary Core Ideas

PS3.D: Energy in Chemical Processes and Everyday Life
- When two objects rub against each other, this interaction is called friction. Friction between two surfaces can warm both of them (e.g., rubbing hands together). (2-PS3-1)

Grade 2 K-ETS1 Engineering Design

K-ETS1.3. Analyze data from tests of two objects designed to solve the same design problem to compare the strengths and weaknesses of how each object performs.*

[Note: K-2-ETS1-1 and K-2-ETS1-2 are found in Grade 1]

Science and Engineering Practices

Analyzing and Interpreting Data
- Analyze data from tests of an object or tool to determine if it works as intended. (K-2-ETS1-3)

Disciplinary Core Ideas

ETS1.C: Optimizing the Design Solution
- Because there is always more than one possible solution to a problem, it is useful to compare and test designs. (K-2-ETS1-3)

Common Core State Standards Connections:

- Mathematics - K.MD.B.3: Classify objects into given categories; count the number of objects in each category and sort the categories by count. (2-PS1-1)
- ELA Literacy - W.2.2: Write informative/explanatory texts in which they introduce a topic, use facts and definitions to develop points, and provide a concluding statement or section. (2-PS1-4)
- Mathematics - 2.MD.D.10: Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems, using information presented in a bar graph. (2-PS3-1)

- Mathematics - 1.MD.C.4: Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another. (K-2-ETS1-3)
Grade 3: Overview

Human Interactions

In grade 3, students develop and sharpen their skills at obtaining, recording and charting, and analyzing data in order to study their environment. They use these practices to study the interactions between humans and earth systems, humans and the environment, and humans and the designed world. They learn that these entities not only interact but influence behaviors, reactions, and traits of organisms. Grade 3 students analyze weather patterns and consider humans’ influence and opportunity to impact weather-related events. In life science they study the interactions between and influence of the environment and human traits and characteristics. They use the engineering design process to identify a problem and design solutions that enhance human’s interactions with their surroundings and to meet their needs. Students consider the interactions and consequent reactions between objects and forces, including forces that are balanced or not. Students reason and provide evidence to support arguments for the influence of humans on nature and nature on human experience.

Grade 3: Earth and Space Sciences

3-ESS2 Earth’s Systems

3-ESS2-1. Use graphs and tables of local weather data to describe and predict typical weather during a particular season in an area. [Clarification Statement: Examples of data could include average temperature, precipitation, wind direction and wind speed.] [Assessment Boundary: Graphical displays are limited to pictographs and bar graphs. Assessment does not include climate change.]

3-ESS2-2. Obtain and summarize information about the climate of different regions of the world to illustrate that typical weather conditions over a year vary by region.

Science and Engineering Practices

Analyzing and Interpreting Data
- Represent data in tables and various graphical displays (bar graphs, pictographs and/or pie charts) to reveal patterns that indicate relationships. (3-ESS2-1)
- Obtain, Evaluating, and Communicating Information
- Obtain and combine information from books and other reliable media to explain phenomena. (3-ESS2-2)

Common Core State Standards Connections:
ELA/Literacy -
RI.3.1 Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. (3-ESS2-2)
RI.3.2 Determine the main idea of a text; recount the key details and explain how they support the main idea. (3-ESS2-2)
RI.3.9 Compare and contrast the most important points and key details presented in two texts on the same topic. (3-ESS2-2)
Mathematics -
3.MD.B.3 Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in bar graphs. (3-ESS2-1)

3-ESS3 Earth and Human Activity

3-ESS3-1. Evaluate the merit of a design solution that reduces the impacts of a weather-related hazard.* [Clarification Statement: Examples of design solutions to a weather-related hazard could include a barrier to prevent flooding, a wind-resistant roof, and a lighting rod.]

Science and Engineering Practices

Engaging in Argument from Evidence
- Make a claim about the merit of a solution to a problem by citing relevant evidence about how it meets the criteria and constraints of the problem. (3-ESS3-1)

Disciplinary Core Ideas

ESS3.B: Natural Hazards
- A variety of natural hazards result from natural processes. Humans cannot eliminate natural hazards but can take steps to reduce their impacts. (3-ESS3-1) (Note: This Disciplinary Core Idea is also addressed by 4-ESS3-2.)
Grade 3: Life Science

3-LS1 From Molecules to Organisms: Structures and Processes

3-LS1-1. Use simple graphical representations to show that species have unique and diverse life cycles. Describe that all organisms have birth, growth, reproduction, and death in common but there are a variety of ways in which these happen. (Clarification Statement: Examples can include different ways plants and animals are born (e.g., sprout from a seed, born from an egg), grow (e.g., increase in size and weight, produce new part), reproduce (e.g., develop seeds and spores, root runners, mate and lay eggs that hatch) and die (e.g., length of life).) [Assessment Boundary: Assessment of plant life cycles is limited to those of flowering plants. Assessment of animal life cycles is focused on a comparison of the stages, not on a detailed description of any one organism's cycle, nor the differences of “complete metamorphosis” and “incomplete metamorphosis”. Assessment does not include details of human reproduction.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*.

Analyzing and Interpreting Data
- Represent data in tables and various graphical displays (bar graphs, pictographs and/or pie charts) to reveal patterns that indicate relationships. (3-LS1-1)

Disciplinary Core Ideas

LS1.B: Growth and Development of Organisms
- Plants and animals have unique and diverse life cycles. (3-LS1-1)

3-LS2 Ecosystems: Interactions, Energy, and Dynamics

[Note: 3-LS2-1 from NGSS is not included]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*.

Analyzing and Interpreting Data
- Use evidence to support an explanation. (3-LS2-1)
- Different organisms vary in how they look and function because they have different inherited information. (3-LS3-1)
- Other characteristics result from individuals’ interactions with the environment, which can range from diet to learning.
- Use data from multiple experiments to describe and support an explanation. (3-LS3-2)
- Use simple graphical representations to show that species have unique and diverse life cycles. (3-LS1-1)

Disciplinary Core Ideas

LS3.A: Inheritance of Traits
- Many characteristics of organisms are inherited from their parents. (3-LS3-1)
- Other characteristics result from individuals’ interactions with the environment, which can range from diet to learning. (3-LS3-2)
- Many characteristics involve both inheritance and environment. (3-LS3-2)

LS3.B: Variation of Traits
- Different organisms vary in how they look and function because they have different inherited information. (3-LS3-1)
- The environment also affects the traits that an organism develops or has. (3-LS3-2)

Science and Engineering Practices

Analyzing and Interpreting Data
- Represent data in tables and various graphical displays (bar graphs, pictographs and/or pie charts) to reveal patterns that indicate relationships. (3-LS1-1)
- Use data from multiple experiments to describe and support an explanation. (3-LS3-2)
- Use simple graphical representations to show that species have unique and diverse life cycles. (3-LS1-1)

Interactions, Energy, and Dynamics

**[Clarification Statement: Examples can include different ways plants and animals are born (e.g., sprout from a seed, born from an egg), grow (e.g., increase in size and weight, produce new part), reproduce (e.g., develop seeds and spores, root runners, mate and lay eggs that hatch) and die (e.g., length of life).] [Assessment Boundary: Assessment of plant life cycles is limited to those of flowering plants. Assessment of animal life cycles is focused on a comparison of the stages, not on a detailed description of any one organism's cycle, nor the differences of “complete metamorphosis” and “incomplete metamorphosis”. Assessment does not include details of human reproduction.]

3-LS3 Heredity: Inheritance and Variation of Traits

3-LS3-1. Provide evidence, including through the analysis of data, that plants and animals have traits inherited from parents and that variation of these traits exist in a group of similar organisms. (Clarification Statement: Examples of inherited traits that vary include the color of fur, shape of leaves, length of legs, and size of flowers.) [Assessment Boundary: Assessment does not include genetic mechanisms of inheritance nor prediction of traits. Assessment is limited to non-human examples.]

3-LS3-2. Distinguish between inherited characteristics and those characteristics that result from a direct interaction with the environment. (Clarification Statement: Examples of the environment affecting a characteristic could include normally tall plants grown with insufficient water or light are stunted; a lizard missing a tail due to a predator; and, a pet dog that is given too much food and little exercise may become overweight.)

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*.

Analyzing and Interpreting Data
- Use evidence (e.g., observations, patterns) to support an explanation. (3-LS3-1)
- Use simple graphical representations to show that species have unique and diverse life cycles. (3-LS1-1)
- Different organisms vary in how they look and function because they have different inherited information. (3-LS3-1)
- The environment also affects the traits that an organism develops or has. (3-LS3-2)

Disciplinary Core Ideas

LS3.A: Inheritance of Traits
- Many characteristics of organisms are inherited from their parents. (3-LS3-1)
- Other characteristics result from individuals’ interactions with the environment, which can range from diet to learning. (3-LS3-2)
- Many characteristics involve both inheritance and environment. (3-LS3-2)

LS3.B: Variation of Traits
- Different organisms vary in how they look and function because they have different inherited information. (3-LS3-1)
- The environment also affects the traits that an organism develops or has. (3-LS3-2)

3-LS4 Biological Evolution: Unity and Diversity

3-LS4-1. Use fossils to describe types of organisms and their environments that existed long ago and compare those to living organisms and their environments. Recognize that most kinds of plants and animals that once lived on Earth are no longer found anywhere. (Assessment Boundary: Assessment does not include identification of specific fossils or present plants and animals. Comparisons are limited to physical or observable features; not to include dynamic processes or genetics.)

3-LS4-2. Use evidence to construct an explanation for how the variations in characteristics among individuals within the same species may provide advantages to these individuals in their survival and reproduction. (Clarification Statement: Examples might include rose bushes of the same species, one with slightly longer thorns than the other which may prevent its predation by deer; and color variation within a species that may provide advantages so one organism may be more likely to survive and therefore more likely to leave offspring such as rock pocket mice. Examples of evidence could include needs and characteristics of the organisms and habitats involved.)

3-LS4-3. Construct an argument with evidence that in a particular environment some organisms can survive well, some survive less well, and some cannot survive. (Clarification Statement: Examples of evidence could include needs and characteristics of the organisms and habitats involved.)

3-LS4-4. Analyze and interpret data about changes in the environment in an area and describe how the changes may affect the ability of organisms that live in that area to survive and reproduce. (Clarification Statement: Environmental changes should include changes to landforms, distribution of water, climate, and availability of resources. Changes in the environment could range in time from a season to decades. Data should be provided.) [Assessment Boundary: Assessment is limited to a single environmental change, however, it is understood that environmental changes are complex.]

3-LS4-5(MA). Provide evidence to support a claim that the survival of a population is dependent upon reproduction. (Assessment Boundary: Assessment does not address details of reproduction.)

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*.

Massachusetts Draft Revised Science and Technology/Engineering Standards, December 2013
Available at www.doe.mass.edu/STEM(review.html); Submit input to mathscitenceech@doe.mass.edu
Science and Engineering Practices

Analyzing and Interpreting Data
- Analyze and interpret data to make sense of phenomena using logical reasoning. (3-LS4-1), (3-LS4-4)

Constructing Explanations and Designing Solutions
- Use evidence (e.g., observations, patterns) to construct an explanation. (3-LS4-2)
- Identify the evidence that supports particular points in an explanation. (3-LS4-5)

Engaging in Argument from Evidence
- Construct an argument with evidence. (3-LS4-3)

Disciplinary Core Ideas

LS1.B: Growth and Development of Organisms
- Reproduction is essential to the continued existence of every kind of organism. (3-LS4-5)

LS2.C: Ecosystem Dynamics, Functioning, and Resilience
- When the environment changes in ways that affect a place's physical characteristics, temperature, or availability of resources, some organisms survive and reproduce, others move to new locations, yet others move into the transformed environment, and some die. (secondary to 3-LS4-4)

LS4.A: Evidence of Common Ancestry and Diversity
- Some kinds of plants and animals that once lived on Earth are no longer found anywhere. (Note: moved from K-2) (3-LS4-1)
- Fossils provide evidence about the types of organisms that lived long ago and also about the nature of their environments. Fossils can be compared with one another and to living organisms according to their similarities and differences. (3-LS4-1)

LS4.B: Natural Selection
- Sometimes the differences in characteristics between individuals of the same species provide advantages in surviving, finding mates, and reproducing. (3-LS4-2)

LS4.C: Adaptation
- For any particular environment, some kinds of organisms survive well, some survive less well, and some cannot survive at all. (3-LS4-2)

LS4.D: Biodiversity and Humans
- Populations live in a variety of habitats, and change in those habitats affects the organisms living there. (3-LS4-4)

Common Core State Standards Connections:
ELA/Literacy-
W.3.2 Write informative/explanatory texts to examine a topic and convey ideas and information clearly. (3-LS3-2)

3.MD.B.3 Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets. (3-LS4-4)
Grade 3: Physical Science

3-PS2 Motion and Stability: Forces and Interactions

3-PS2-1. Provide evidence to explain the effect of multiple forces, including friction, on an object. Include balanced forces that do not change the motion of the object and unbalanced forces that do change the motion of the object.

[Assessment Boundary: Assessment is limited to one variable at a time: number, size, or direction of forces. Assessment does not include quantitative force magnitude, only qualitative and relative. All descriptions of gravity are limited to a force that pulls objects down.]

3-PS2-3. Conduct an investigation to determine the nature of the forces between two magnets based on their orientations and distance relative to each other. [Assessment Boundary: Assessment is limited to forces produced by magnetic objects that can be manipulated by students.]

3-PS2-4. Define a simple design problem that can be solved by applying the use of the interactions between magnets.*

[Clarification Statement: Examples of problems could include constructing a latch to keep a door shut and creating a device to keep two moving objects from touching each other.]

[Note: 3-PS2-2 from NGSS is not included.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Asking Questions and Defining Problems
- Define a simple problem that can be solved through the development of a new or improved object or tool. (3-PS2-4)

Planning and Carrying Out Investigations
- Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered. (3-PS2-1), (3-PS2-3)

Disciplinary Core Ideas

3-PS2.A: Forces and Motion
- Each force acts on one particular object and has both strength and a direction. An object at rest typically has multiple forces acting on it, but they add to give zero net force on the object. Forces that do not sum to zero can cause changes in the object's speed or direction of motion. (Boundary: Qualitative and conceptual, but not quantitative addition of forces are used at this level.) (3-PS2-1)

3-PS2.B: Types of Interactions
- Each force acts on one particular object and has both strength and a direction. An object at rest typically has multiple forces acting on it, but they add to give zero net force on the object. Forces that do not sum to zero can cause changes in the object's speed or direction of motion. (Boundary: Qualitative and conceptual, but not quantitative addition of forces are used at this level.) (3-PS2-1)

Grade 3 3-5-ETS1 Engineering Design

3-5-ETS1-1. Define a simple design problem that reflects a need or a want. I include criteria for success and constraints on materials, time, or cost that a potential solution must meet.*

3-5-ETS1-2. Generate several possible solutions to a design problem. Compare each solution based on how well each is likely to meet the criteria and constraints of the design problem.*

3-5-ETS1-4(MA). Gather information using various informational resources on possible solutions to a design problem. Present different representations of a design solution.* [Clarification Statement: Examples of informational resources can include books, videos, and websites. Examples of representations can include graphic organizers, sketches, models, and prototypes.]

[Note: 3-5-ETS1-3 and 3-5-ETS1-5(MA) are found in Grade 4.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Asking Questions and Defining Problems
- Define a simple problem that can be solved through the development of an object, tool, process, or system and includes several criteria for success and constraints on materials, time, or cost. (3-5-ETS1-1)

Constructing Explanations and Designing Solutions
- Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design problem. (3-5-ETS1-2)

Obtaining, Evaluating, and Communicating Information
- Obtain and combine information from books and/or other reliable media to explain phenomena or solutions to a design problem. (3-5-ETS1-4)

Disciplinary Core Ideas

ETS1.A: Defining and Delimiting Engineering Problems
- Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. (3-5-ETS1-1)

ETS1.B: Developing Possible Solutions
- Research on a problem should be carried out before beginning to design a solution. Testing a solution involves investigating how well it performs under a range of likely conditions. (3-5-ETS1-2), (3-5-ETS1-4)
- At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs. (3-5-ETS1-2)

ETS1.C: Optimizing the Design Solution
- Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (3-5-ETS1-2)
Grade 4: Overview

Matter and Energy
In grade 4, students observe and interpret patterns related to the transfer of matter and energy on earth, in physical interactions, and in organisms. Students learn about energy—its motion, transfer, and conversion—in different physical contexts. Grade 4 students interpret patterns of changes over time as it relates to the deposition and erosion in landscape formation. They study today’s landscapes to provide evidence for past processes. Students learn about a broader set of animal internal and external structures that support life, growth, behavior, and reproduction. They work through the engineering design process, focusing on developing solutions by building, testing, and redesigning prototypes to fit a specific purpose. Each domain relates to the use of matter and energy over time and for specific purposes.

Grade 4: Earth and Space Sciences

<table>
<thead>
<tr>
<th>4-ESS1</th>
<th>Earth’s Place in the Universe</th>
</tr>
</thead>
</table>
| 4-ESS1-1. Construct a claim with evidence that changes to a landscape due to erosion and deposition over long periods of time result in rock layers and landforms that can be interpreted today. Use evidence from a given landscape that includes simple landforms and rock layers to support a claim about the role of erosion or deposition in the formation of the landscape. [Clarification Statement: Examples of evidence and claims could include rock layers with shell fossils above rock layers with plant fossils and no shells, indicating a change from deposition on land to deposition in water over time; and, a canyon with rock layers in the walls and a river in the bottom, indicating that a river eroded the rock over time.] [Assessment Boundary: Assessment does not include specific knowledge of the mechanisms of rock formation or memorization of specific rock formations and layers. Assessment is limited to relative time.]

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
<td>ESS1.C: The History of Planet Earth</td>
</tr>
<tr>
<td>• Identify the evidence that supports particular points in an explanation. (4-ESS1-1)</td>
<td>• Local, regional, and global patterns of rock formations reveal changes over time due to earth forces, such as earthquakes. The presence and location of certain fossil types indicate the order in which rock layers were formed. (4-ESS1-1) • Earth has changed over time. Understanding how landforms develop, are weathered (broken down into smaller pieces), and erode (get transported elsewhere) can help infer the history of the current landscape. (4-ESS1-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4-ESS2</th>
<th>Earth’s Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-ESS2-1. Make observations and collect data to provide evidence that rocks, soils, and sediments are broken into smaller pieces through mechanical weathering and moved around through erosion by water, ice, wind, and vegetation. [Clarification Statement: Mechanical weathering can include frost wedging, abrasion, and tree root wedging. Erosion can include movement by blowing wind, flowing water, and moving ice.] [Assessment Boundary: Assessment does not include chemical processes.]</td>
<td></td>
</tr>
<tr>
<td>4-ESS2-2. Analyze and interpret maps of Earth’s mountain ranges, deep ocean trenches, and the placement of volcanoes and earthquakes to describe patterns of these features and their locations relative to boundaries between continents and oceans.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning and Carrying Out Investigations</td>
<td>ESS2.A: Earth Materials and Systems</td>
</tr>
<tr>
<td>• Make observations and measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon. (4-ESS2-1)</td>
<td>• Rainfall helps to shape the land and affects the types of living things found in a region. Water, ice, wind, and living organisms break rocks, soils, and sediments into smaller particles and move them around. (4-ESS2-1)</td>
</tr>
<tr>
<td>Analyzing and Interpreting Data</td>
<td>ESS2.B: Plate Tectonics and Large-Scale System Interactions</td>
</tr>
<tr>
<td>• Analyze and interpret data to make sense of phenomena using logical reasoning. (4-ESS2-2)</td>
<td>• The locations of mountain ranges, deep ocean trenches, ocean floor structures, earthquakes, and volcanoes occur in patterns. Most earthquakes and volcanoes occur in bands that are often along the boundaries between continents and oceans. Major mountain chains form inside continents or near their edges. Maps can help locate the different land and water features areas of Earth. (4-ESS2-2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4-ESS3</th>
<th>Earth and Human Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-ESS3-1. Obtain information to describe that energy and fuels humans use are derived from natural resources and that some energy and fuel sources are renewable and some are not. [Clarification Statement: Examples of renewable energy resources could include wind energy, water behind dams, and sunlight; non-renewable energy resources are fossil fuels and fissile materials.]</td>
<td></td>
</tr>
<tr>
<td>4-ESS3-2. Evaluate the design of a solution on its potential to reduce the impacts of an earthquake, flood, tsunami or volcanic eruption on humans.* [Clarification Statement: Examples of solutions could include a proposal for an earthquake resistant building and improved monitoring of volcanic activity.]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obtaining, Evaluating, and Communicating Information</td>
<td>ESS3.A: Natural Resources</td>
</tr>
<tr>
<td>• Obtain and combine information from books and other reliable media to explain phenomena. (4-ESS3-1)</td>
<td>• Energy and fuels that humans use are derived from natural sources. Some resources are renewable over time, and others are not. (4-ESS3-1)</td>
</tr>
</tbody>
</table>

Massachusetts Draft Revised Science and Technology/Engineering Standards, December 2013
Available at www.doe.mass.edu/STEM/review.html; Submit input to mathscitenceech@doe.mass.edu
Constructing Explanations and Designing Solutions

- Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution. (4-ESS3-2)

ESS3.B: Natural Hazards
- A variety of hazards result from natural processes (e.g., earthquakes, tsunamis, volcanic eruptions). Humans cannot eliminate the hazards but can take steps to reduce their impacts. (4-ESS3-2) (Note: This Disciplinary Core Idea can also be found in 3.WC)

Common Core State Standards Connections:
ELA/Literacy –
RI.4.9 Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. (4-ESS3-1)
W.4.9 Draw evidence from literary or informational texts to support analysis, reflection, and research. (4-ESS3-1)
Grade 4: Life Science

4-LS1 From Molecules to Organisms: Structures and Processes

4-LS1-1. Construct an argument that animals and plants have internal and external structures that support their survival, growth, behavior, and reproduction. [Clarification Statement: External animal structures might include legs, wings, feathers, trunks, claws, horns and antennae. Animal organs might include eyes, ears, nose, heart, stomach, lung, brain, and skin. Plant structures might include leaves, roots, stems, bark, branches, and flowers.] [Assessment Boundary: Assessment is limited to macroscopic structures.]

[Note: 4-LS1-2 from NGSS is not included.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engaging in Argument from Evidence</td>
<td>LS1.A: Structure and Function</td>
</tr>
<tr>
<td>• Construct an argument with evidence, data, and/or a model. (4-LS1-1)</td>
<td>• Plants and animals have both internal and external structures that serve various functions in growth, survival, behavior, and reproduction. (4-LS1-1)</td>
</tr>
</tbody>
</table>
Grade 4: Physical Science

4-PS3 Energy

4-PS3-1. Use evidence to construct an explanation relating the speed of an object to the energy of that object. [Assessment Boundary: Assessment does not include quantitative measures of changes in the speed of an object or on any precise or quantitative definition of energy, nor account for mass.]

4-PS3-2. Make observations to show that energy can be transferred from place to place by sound, light, heat, and electric currents. [Assessment Boundary: Assessment does not include quantitative measurements of energy.]

4-PS3-3. Ask questions and predict outcomes about the changes in energy that occur when objects collide. [Clarification Statement: Changes in energy can include a change in the object’s motion, position, and the generation of heat and/or sound. [Assessment Boundary: Assessment does not include analysis of forces or quantitative measurements of energy.]

4-PS3-4. Apply scientific principles of energy and motion to refine a device that converts motion energy to electrical energy or uses stored energy to cause motion or produce light or sound.*

Science and Engineering Practices

Common Core State Standards Connections:

EL4/Literacy - SL.4.3

Recall relevant information from experiences or gather relevant information from print and digital sources; take notes and categorize information, and provide a list of sources. (4-PS3-1)

4-PS4 Waves and their Applications in Technologies for Information Transfer

4-PS4-1. Develop a model of a simple wave to communicate that waves: a. are regular patterns of motion along which energy travels, and b. can differ in amplitude and wavelength. [Clarification Statement: Examples of models could include diagrams, analogies, and physical models using wire to illustrate wavelength and amplitude of waves.] [Assessment Boundary: Assessment is limited to mechanical waves (including sound) and does not include interference effects, electromagnetic waves, non-periodic waves, or quantitative models of amplitude and wavelength.]

4-PS4-2. Develop a model to describe that light must bounce off an object and enter the eye for the object to be seen. [Assessment Boundary: Assessment does not include knowledge of specific colors reflected and seen, the cellular mechanisms of vision, or how the retina works.]

4-PS4-3. Develop and compare multiple ways to transfer information through encoding, sending, receiving, and decoding a pattern.* [Clarification Statement: Examples of solutions could include drums sending coded information through sound waves, using a grid of 1’s and 0’s representing black and white to send information about a picture, and using Morse code to send text.]

Science and Engineering Practices

Disciplinary Core Ideas

PS3.A: Definitions of Energy

- The faster a given object is moving, the more energy it possesses. (4-PS3-1)
- Energy can be moved from place to place by moving objects or through sound, light, or electric currents. (4-PS3-2)

PS3.B: Conservation of Energy and Energy Transfer

- Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. (4-PS3-2),(4-PS3-3)
- Light also transfers energy from place to place. (4-PS3-2)
- Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy. (4-PS3-2),(4-PS3-4)

PS3.C: Relationship Between Energy and Forces

- When objects collide, the contact forces transfer energy so as to change the objects’ motions. (4-PS3-3)

PS3.D: Energy in Chemical Processes and Everyday Life

- The expression “produce energy” typically refers to the conversion of stored energy into a desired form for practical use. (4-PS3-4)

Grade 4 - 3-5-ETS1 Engineering Design

3-5-ETS1-3. Plan and carry out tests of one or more elements of a model or prototype in which variables are controlled and failure points are considered to identify which elements need to be improved. Apply the results of tests to redesign a model or prototype.*

3-5-ETS1-5(MA). Evaluate relevant design features that must be considered in building a model or prototype of a solution to a given design problem.** [Clarification Statement: Examples of design features can include size, shape, and weight.]

Note: 3-5-ETS1-1, 3-5-ETS1-2, and 3-5-ETS1-4(MA) are found in Grade 3.

The performance expectations above were developed using the following elements from the NRC document, A Framework for K-12 Science Education:

Science and Engineering Practices

Analyzing and Interpreting Data

- Use data to evaluate and refine design solutions. (3-4-ETS1-3)

Disciplinary Core Ideas

ETS1.A: Defining and Delimiting an Engineering Problem

- The success of a designed solution is determined by considering the desired features of a solution (criteria).
5) Planning and Carrying Out Investigations
 • Plan and conduct fair tests in which variables are controlled and the number of trials considered. (3-5-ETS1-3)

ETS1.B: Developing Possible Solutions
 • Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved. (3-5-ETS1-3)

Grade 4 3-5-ETS2 Technological Systems

3-5-ETS2-1(MA). Recognize that technology is any modification of the natural or designed world done to fulfill human needs or wants. These modifications can be improvements to existing technologies or the development of new technologies.*

3-5-ETS2-2(MA). Describe that technological products or devices are made up of parts. Use sketches or drawings to show how each part of a product or device relates to other parts in the product or device.*

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Develop and/or use models to describe and/or predict phenomena. (3-5-ETS2-2)</td>
<td>• Over time, people's needs and wants change, as do their demands for new and improved technologies. Engineers improve existing technologies or develop new ones to increase their benefits (e.g., better artificial limbs), to decrease known risks (e.g., seatbelts in cars), and to meet societal demands (e.g., cell phones). When new technologies become available, they can bring about changes in the way people live and interact with one another. (3-5-ETS2-1)</td>
</tr>
</tbody>
</table>

*The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.
Connections and Relationships in Systems

In grade 5, students model, provide evidence to support arguments, and obtain and display data about relationships and interactions among observable components of different systems. By studying systems grade 5 students learn that objects and organisms do not exist in isolation and that animals, plants and their environments are connected to, interact with, and are influenced by each other. They study the relationships between Earth and other nearby objects in the solar system and the impact of those relationships on patterns of events as seen from Earth. They learn about the relationship among elements of Earth’s systems through the cycling of water and human practices and processes with Earth’s resources. They also learn that matter and energy cycle through plants and animals, and the ecosystems within which they live. An ability to describe, analyze and model observable components of different systems is key to understanding the natural and designed world.

Grade 5: Earth and Space Sciences

5-ESS1 Earth’s Place in the Universe

5-ESS1-1.
Use observations, first-hand and from various media, to argue that the sun is a star that appears larger and brighter than other stars because it is closer to the Earth. [Assessment Boundary: Assessment does not include other factors that affect apparent brightness (such as stellar masses, age, stage).]

5-ESS1-2.
Use a model to communicate Earth's relationship to the sun, moon, and stars that explain: a. why people on Earth experience day and night; b. patterns in daily changes in length and direction of shadows over a day; and c. changes in the position of the sun, moon and constellations at different times during a day, over a month, and over a year. [Clarification Statement: Any model used should illustrate that the Earth, sun, and moon are spheres; include orbits of the Earth around the sun and of the moon around Earth; and Earth’s rotation about its axis.] [Assessment Boundary: Assessment does not include causes of seasons nor expect use of Earth's tilt.]

Science and Engineering Practices

Developing and Using Models
- Use a model to test cause and effect relationships or interactions concerning the functioning of a natural or designed system. (5-ESS1-2)
- Engaging in Argument from Evidence
 - Support an argument with evidence, data, or a model. (5-ESS1-1)

Disciplinary Core Ideas

ESS1.A: The Universe and its Stars
- The sun is a star that appears larger and brighter than other stars because it is closer. Stars range greatly in their distance from Earth. (5-ESS1-1)

ESS1.B: Earth and the Solar System
- The orbits of Earth around the sun and of the moon around Earth, together with the rotation of Earth about an axis between its North and South poles, cause observable patterns. These include day and night; daily changes in the length and direction of shadows; and different positions of the sun, moon, and stars at different times of the day, month, and year. (5-ESS1-2)

Common Core State Standards Connections:

Mathematics – 4.MD.A.2
Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale. (5-ESS1-1)

5.NBT.A.1
Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10. (5-ESS1-1)

ELA/Literacy – RI.3.7
Use information gained from illustrations (e.g., maps, photographs) and the words in a text to demonstrate understanding of the text (e.g., where, when, why, and how key events occur). (5-ESS1-1)

SL.5.4
Report on a topic or text or present an opinion, sequencing ideas logically and using appropriate facts and relevant, descriptive details to support main ideas or themes; speak clearly at an understandable pace. (5-ESS1-1)

5-ESS2 Earth’s Systems

5-ESS2-1.
Use a model to describe the cycling of water on Earth between the geosphere, biosphere, hydrosphere, and atmosphere through evaporation, precipitation, surface runoff, condensation, transpiration, and runoff. [Assessment Boundary: Assessment does not include explanations of mechanisms that drive the cycle.]

5-ESS2-2.
Describe and graph the amounts and percentages of salt water in the ocean; fresh water in lakes, rivers, and ground water; and fresh water frozen in glaciers and polar ice caps to provide evidence about the availability of fresh water on Earth’s biosphere. [Clarification Statement: Nearly all of Earth’s available water is in the ocean; most fresh water is in glaciers or underground.] [Assessment Boundary: Assessment does not include the atmosphere.]

Science and Engineering Practices

Developing and Using Models
- Develop a model using an example to describe a scientific principle. (5-ESS2-1)
- Using Mathematics and Computational Thinking
 - Describe and graph quantities such as area and volume to address scientific questions. (5-ESS2-2)

Disciplinary Core Ideas

ESS2.A: Earth Materials and Systems
- Earth’s major systems are the geosphere (solid and molten rock, soil, and sediments), the hydrosphere (water and ice), the atmosphere (air), and the biosphere (living things, including humans). (5-ESS2-1)

ESS2.C: The Roles of Water in Earth’s Surface Processes
- Nearly all of Earth’s available water is in the ocean. Most fresh water is in glaciers or underground; only a tiny fraction is in streams, lakes, wetlands, and the atmosphere. (5-ESS2-2)
- (Moved from middle school) Water continually cycles among land, ocean, and atmosphere via transpiration, evaporation, condensation and crystallization, and precipitation, as well as downhill flows on land. (5-ESS2-1)
5-ESS3 Earth and Human Activity

5-ESS3-1. Obtain and combine information about ways communities reduce the impact on the Earth's resources and environment by changing an agricultural, industrial, or community practice or process. [Clarification Statement: Examples of changed practices or processes include treating sewage, reducing the amounts of materials used, capturing polluting emissions from factories or power plants, and preventing runoff from agricultural activities.] [Assessment Boundary: Assessment does not include social science aspects of practices such as regulation or policy.]

5-ESS3-2(MA). Test a simple system designed to filter an impurity out of water and propose one change to the design to improve it.* [Clarification Statement: Examples of impurities could include particulates or bacteria.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

<table>
<thead>
<tr>
<th>Obtaining, Evaluating, and Communicating Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Obtain and combine information from books and/or other reliable media to explain phenomena or solutions to a design problem. (5-ESS3-1)</td>
</tr>
</tbody>
</table>

Planning and Carrying Out Investigations

| Make observations and/or measurements to test a design solution. (5-ESS3-2) |

Disciplinary Core Ideas

ESS3.C: Human Impacts on Earth Systems

| Human activities in agriculture, industry, and everyday life have had major effects on the land, vegetation, streams, ocean, air, and even outer space. But individuals and communities are doing things to help protect Earth's resources and environments. For example, they are treating sewage, reducing the amounts of materials they use, and regulating sources of pollution such as emissions from factories and power plants or the runoff from agricultural activities. (5-ESS3-1) |

Common Core State Standards Connections:

ELA/Literacy -
RI.5.1 Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. (5-ESS3-1)
RI.5.7 Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (5-ESS3-1)
RI.5.9 Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. (5-ESS3-1)
W.5.9 Draw evidence from literary or informational texts to support analysis, reflection, and research. (5-ESS3-1)
Grade 5: Life Science

<table>
<thead>
<tr>
<th>5-LS1</th>
<th>From Molecules to Organisms: Structures and Processes</th>
</tr>
</thead>
</table>
| 5-LS1.1. **Support an argument with evidence that plants get the materials they need for growth and reproduction chiefly through a process in which they use air, water, and energy from the sun to produce sugars and plant materials.** [Assessment Boundary: The chemical formula or details about the process of photosynthesis is not expected.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

- **Science and Engineering Practices**
 - Engaging in Argument from Evidence
 - Support an argument with evidence, data, or a model. (5-LS1-1)

- **Disciplinary Core Ideas**
 - Plants acquire their material for growth chiefly from air and water. (5-LS1-1)

<table>
<thead>
<tr>
<th>5-LS2</th>
<th>Ecosystems: Interactions, Energy, and Dynamics</th>
</tr>
</thead>
</table>
| 5-LS2.1. **Develop a model of a food web to describe the movement of matter among producers, primary and secondary consumers, decomposers, and the air and soil in the environment:**
 - a. show that plants produce sugars and plant materials;
 - b. show that some animals eat plants for food and other animals eat the animals that eat plants;
 - c. show that some organisms, including fungi and bacteria, break down dead organisms and recycle some materials back to the air and soil. [Clarification Statement: Emphasis is on matter moving throughout the ecosystem. Waste includes matter in the form of gasses (such as air), liquids (such as water), or solids (such as minerals or nutrients).] [Assessment Boundary: Assessment does not include molecular explanations.]

5-LS2-2(MA). Compare at least two designs for a composter to determine which is most likely to encourage decomposition of materials.* [Assessment Boundary: Assessment is limited to qualitative descriptions or comparisons of decomposition.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

- **Science and Engineering Practices**
 - Developing and Using Models
 - Develop a model to describe phenomena. (5-LS2-1)
 - Planning and Carrying Out Investigations
 - Test two different models of the same proposed object, tool, or process to determine which better meets criteria for success. (5-LS2-2)

- **Disciplinary Core Ideas**
 - LS2.A: Interdependent Relationships in Ecosystems
 - Organisms are related in food webs in which some animals eat plants for food and other animals eat the animals that eat plants. (5-LS2-1)
 - Some organisms, such as fungi and bacteria, break down dead organisms (both plants or plants parts and animals) and therefore operate as “decomposers.” Decomposition eventually restores (recycles) some materials back to the soil. (5-LS2-1)

 - LS2.B: Cycles of Matter and Energy Transfer in Ecosystems
 - Matter cycles between the air and soil and among plants, animals, and microbes as these organisms live and die. Organisms obtain gases, and water, from the environment, and release waste matter (gas, liquid, or solid) back into the environment. (5-LS2-1)

Massachusetts Draft Revised Science and Technology/Engineering Standards, December 2013
Available at www.doe.mass.edu/STEMreview.html; Submit input to mathscitenceech@doe.mass.edu
Grade 5: Physical Science

5-PS1 Matter and Its Interactions

5-PS1-1. Use a model of matter as made of particles too small to be seen to explain common phenomena involving gasses, phase changes between gas and liquid, and dissolving. [Clarification Statement: Examples of common phenomena the model should be able to describe include adding air to expand a basketball, compressing air in a syringe, dissolving sugar in water, and evaporating salt water.] [Assessment Boundary: Assessment does not include the atomic-scale mechanism of evaporation and condensation or defining the unseen particles.]

5-PS1-2. Measure and graph the weights of substances before and after a reaction or phase change to provide evidence that regardless of the type of change that occurs when heating, cooling or combining substances, the total weight of matter is conserved. [Clarification Statement: Assume that reactions with any gas production are conducted in a closed system.] [Assessment Boundary: Assessment does not include distinguishing mass and weight.]

5-PS1-3. Make observations and measurements to identify substances based on their unique properties, including color, hardness, reflectivity, electrical conductivity, thermal conductivity, response to magnetic forces, and solubility. [Clarification Statement: Examples of substances to be identified could include baking soda and other powders, metals, minerals, and liquids.] [Assessment Boundary: Assessment does not include density or distinguishing mass and weight.]

5-PS1-4. Conduct an experiment to determine whether the mixing of two or more substances results in new substances with new properties.

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.

Disciplinary Core Ideas

5-PS1. Matter and Its Interactions

5-PS1-A: Structure and Properties of Matter
- Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. A model shows that gases are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon; the effects of air on larger particles or objects. (5-PS1-3)
- The amount (weight) of matter is conserved when it changes form, even in transitions in which it seems to vanish. (5-PS1-2)
- Measurements of a variety of properties can be used to identify materials. (Boundary: At this grade level, mass and weight are not distinguished, and no attempt is made to define the unseen particles or explain the atomic-scale mechanism of evaporation and condensation.) (5-PS1-3)

5-PS1-B: Chemical Reactions
- When two or more different substances are mixed, a new substance with different properties may be formed. (5-PS1-4)
- No matter what reaction or change in properties occurs, the total weight of the substances does not change. (Boundary: Mass and weight are not distinguished at this grade level.) (5-PS1-2)

Developing and Using Models
- Use a model to describe phenomena. (5-PS1-1)
- Make observations and measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon. (5-PS1-3)
- Use a model to describe substances. (5-PS1-2)

Planning and Carrying Out Investigations
- Measure and graph quantities such as weight to address scientific questions and problems. (5-PS1-1)

Using Mathematics and Computational Thinking
- Measure and graph quantities such as weight to address scientific questions and problems. (5-PS1-1)

Common Core State Standards Connections:
- Mathematics -
 - 5.MD.C.3: Recognize volume as an attribute of solid figures and understand concepts of volume measurement. (5-PS1-1)
 - 5.G.A.2: Recalling relevant information from experiences or gather relevant information from print and digital sources; take notes and categorize information, and provide a list of sources. (5-PS1-2)

5-PS2 Motion and Stability: Forces and Interactions

5-PS2-1. Support an argument with evidence that the gravitational force exerted by Earth on objects is directed toward the Earth’s center. [Assessment Boundary: Assessment does not include mathematical representation of gravitational force.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.

Disciplinary Core Ideas

PS2-B: Types of Interactions
- The gravitational force of Earth acting on an object near Earth’s surface pulls that object toward the planet’s center. (5-PS2-1)

Engaging in Argument from Evidence
- Support an argument with evidence, data, or a model. (5-PS2-1)

Science and Engineering Practices
- Support an argument with evidence, data, or a model. (5-PS2-1)

Common Core State Standards Connections:
- ELA/Literacy -
 - SL.5.4: Report on a topic or text or present an opinion, sequencing ideas logically and using appropriate facts and relevant, descriptive details to support main ideas or themes; speak clearly at an understandable pace. (5-PS2-1)

5-PS3 Energy

5-PS3-1. Use a model to describe that the food animals digest: a. contains energy that was once energy from the sun, and b. provides energy and materials for body repair, growth, motion, body warmth, and reproduction. [Clarification Statement: Examples of models could include diagrams and flow charts.] [Assessment Boundary: Details of photosynthesis or respiration are not expected.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.

Disciplinary Core Ideas

PS3-D: Energy in Chemical Processes and Everyday Life
- The energy released [from] food was once energy from the sun that was captured by plants in the chemical process that forms plant matter (from air and water). (5-PS3-1)
- Food also releases energy when digested. (5-PS3-1)
- Food provides animals with the materials they need for body repair and growth and the energy they need to maintain body warmth and for motion. (Secondary to 5-PS3-1)

LS2-A: Interdependent Relationships in Ecosystems
- The food of almost any kind of animal can be traced back to plants. (5-PS3-1)

Science and Engineering Practices
- Use a model to describe phenomena. (5-PS3-1)
Grade 6: Overview

Structure and Function
In Grade 6 students inquire about the structure and function of the world around them. The integration of earth, life, and physical sciences with technology/engineering gives students relevant and engaging opportunities with natural phenomena and design problems that provide the foundation for more abstract and complex topics through grade 7 and 8. Grade 6 students start with a framework that relates structure and function of the macro and microscopic world and introduces scale and time in all science and technology/engineering domains. Students use models and provide evidence to make claims and explanations about structure-function relationships in different science and technology/engineering domains.

Grade 6: Earth and Space Sciences

<table>
<thead>
<tr>
<th>Grade 6</th>
<th>MS-ESS1</th>
<th>Earth's Place in the Universe</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-ESS1-1a.</td>
<td>Develop and use a model of the Earth-sun-moon system to explain the causes of lunar phases and eclipses of the sun and moon. (Clarification Statement: Examples of models can be physical, graphical, or conceptual and should emphasize relative positions and distances.)</td>
<td></td>
</tr>
<tr>
<td>MS-ESS1-4.</td>
<td>Analyze and interpret rock layers and index fossils to determine the relative ages of rock formations. Explain that these sources of evidence, along with radiometric dating, are used to construct the geologic time scale of Earth's history. (Clarification Statement: Analysis includes Laws of Superposition and Crosscutting Relationships. Not all organisms are fossilized.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Assessment Boundary: Assessment is limited to minor displacement faults that offset layers and does not include strata sequences that have been reordered or overturned. Assessment does not include recalling the names of specific periods or epochs and events within them, nor specifics of radiometric dating.]</td>
</tr>
<tr>
<td>MS-ESS1-5(MA).</td>
<td>Use graphical displays to illustrate that the Earth and its solar system are part of the Milky Way galaxy, which is one of billions of galaxies in the universe. (Clarification Statement: Graphical displays can include maps, charts, graphs, or data tables.)</td>
<td></td>
</tr>
</tbody>
</table>

[Note: MS-ESS1-1b and MS-ESS1-2 are found in Grade 8. MS-ESS1-3 from NGSS is not included.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*.

<table>
<thead>
<tr>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESS1.A: The Universe and Its Stars</td>
</tr>
<tr>
<td>- Patterns of the apparent motion of the sun, the moon, and stars in the sky can be observed, described, predicted, and explained with models. (MS-ESS1-1)</td>
</tr>
<tr>
<td>- Earth and its solar system are part of the Milky Way galaxy, which is one of many galaxies in the universe. (MS-ESS1-5)</td>
</tr>
<tr>
<td>ESS1.B: Earth and the Solar System</td>
</tr>
<tr>
<td>- This model of the solar system can explain eclipses of the sun and the moon. (MS-ESS1-1)</td>
</tr>
<tr>
<td>ESS1.C: Earth's Place in the Universe</td>
</tr>
<tr>
<td>- The geologic time scale interpreted from rock strata provides a way to organize Earth’s history. Analyses of rock strata and the fossil record provide only relative dates, not an absolute scale. (MS-ESS1-4) (MS-ESS1-3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade 6</th>
<th>MS-ESS2</th>
<th>Earth’s Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-ESS2-3.</td>
<td>Analyze and interpret maps showing the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence that Earth’s plates have moved great distances, collided, and spread apart. (Clarification Statement: Maps may show similarities of rock and fossil types on different continents, the shapes of the continents (including continental shelves), and the locations of ocean structures (such as ridges, fracture zones, and trenches).)</td>
<td></td>
</tr>
</tbody>
</table>

[Assessment Boundary: Paleomagnetic anomalies in oceanic and continental crust are not assessed. Does not include mechanisms for plate motion.] |

[Note: MS-ESS2-2 and MS-ESS2-4 are found in Grade 7. MS-ESS2-1, MS-ESS2-5 and MS-ESS2-6 are found in Grade 8.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*.

<table>
<thead>
<tr>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESS2.B: Plate Tectonics and Large-Scale System Interactions</td>
</tr>
<tr>
<td>- Maps of ancient land and water patterns, based on investigations of rocks and fossils, make clear how Earth’s plates have moved great distances, collided, and spread apart. (MS-ESS2-3)</td>
</tr>
</tbody>
</table>
Grade 6: Life Science

Grade 6 MS-LS1 From Molecules to Organisms: Structures and Processes

MS-LS1-1. Provide evidence that organisms (unicellular and multicellular) are made of cells. [Clarification Statement: Evidence can be drawn from multiple types of organisms, such as plants, animals and bacteria.]

MS-LS1-2. Develop and use a model to describe the ways parts of cells contribute to key cellular functions of obtaining nutrients and water from its environment, disposing of waste, and producing energy: a. the nucleus contains genetic information (DNA) which regulates a cell’s activities; b. chloroplasts are the site of photosynthesis which produces necessary glucose and oxygen; c. mitochondria facilitate cellular respiration (energy production); d. vacuoles store materials, including water, nutrients and waste; e. the cell membrane is a protective barrier that enables nutrients to enter the cell and wastes to be expelled; and f. the cell wall provides structural support to some types of cells. [Clarification Statement: Functions should focus on basic survival needs.] [Assessment Boundary: Assessment does not include specific biochemical steps or chemical processes, ATP, or active transport through the cell membrane.]

[Note: MS-LS1-3, MS-LS1-4, MS-LS1-5, and MS-LS1-7 are found in Grade 7. MS-LS1-6 and MS-LS1-8 from NGSS are not included.]

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
<td></td>
</tr>
<tr>
<td>• Use evidence (e.g., measurements, observations, patterns) to support an explanation. (MS-LS1-1)</td>
<td></td>
</tr>
<tr>
<td>Developing and Using Models</td>
<td></td>
</tr>
<tr>
<td>• Develop and use a model to describe phenomena. (MS-LS1-2)</td>
<td></td>
</tr>
<tr>
<td>LS1.A: Structure and Function</td>
<td></td>
</tr>
<tr>
<td>• All living things are made up of cells, which is the smallest unit that can be said to be alive. An organism may consist of one single cell (unicellular) or many different numbers and types of cells (multicellular). (MS-LS1-1)</td>
<td></td>
</tr>
<tr>
<td>• Within cells, special structures are responsible for particular functions, and the cell membrane forms the boundary that controls what enters and leaves the cell. (MS-LS1-2)</td>
<td></td>
</tr>
</tbody>
</table>

Grade 6 MS-LS4 Biological Evolution: Unity and Diversity

MS-LS4-1. Analyze and interpret evidence from the fossil record to infer patterns of environmental change resulting in extinction and changes to life forms throughout the history of the Earth. [Clarification Statement: Examples of evidence include sets of fossils that indicate an environment, anatomical structures that indicate the function of an organism in the environment, and fossilized tracks that indicate behavior of organisms.] [Assessment Boundary: Assessment does not include the names of individual species, geological eras in the fossil record, nor mechanisms for extinction or speciation.]

MS-LS4-2. Construct an argument using anatomical structures to support evolutionary relationships among and between fossil organisms and modern organisms. I include evidence showing that: a. some organisms have similar traits with similar functions because they were inherited from a common ancestor, b. some organisms have similar traits that serve similar functions because they live in similar environments, and c. some organisms have traits inherited from common ancestors that no longer serve their original function because over time, their environments have changed.

[Note: MS-LS4-4 and MS-LS4-5 are found in Grade 8. MS-LS4-3 and MS-LS4-6 from NGSS are not included.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*.

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzing and Interpreting Data</td>
<td></td>
</tr>
<tr>
<td>• Analyze and interpret data to determine similarities and differences in findings. (MS-LS4-1)</td>
<td></td>
</tr>
<tr>
<td>Engaging in Argument from Evidence</td>
<td></td>
</tr>
<tr>
<td>• Construct an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. (MS-LS4-2)</td>
<td></td>
</tr>
<tr>
<td>LS4.A: Evidence of Common Ancestry and Diversity</td>
<td></td>
</tr>
<tr>
<td>• The collection of fossils and their placement in chronological order (e.g., through the location of the sedimentary layers in which they are found or through radioactive dating) is known as the fossil record. It documents the existence, diversity, extinction, and change of many life forms throughout the history of life on Earth. (MS-LS4-1)</td>
<td></td>
</tr>
<tr>
<td>• Anatomical similarities and differences between various organisms living today and between them and organisms in the fossil record, enable the reconstruction of evolutionary history and the inference of lines of evolutionary descent. (MS-LS4-2)</td>
<td></td>
</tr>
</tbody>
</table>
Grade 6: Physical Science

Science and Engineering Practices

Planning and Carrying Out Investigations
- Plan an investigation individually and collaboratively, and in the design: identify independent and dependent variables and controls, what tools are needed to do the gathering, how measurements will be recorded, and how many data are needed to support a claim. (MS-PS1-6)
- Conduct an investigation and/or evaluate and/or revise the experimental design to produce data to serve as the basis for evidence that meet the goals of the investigation. (MS-PS1-6, MS-PS1-8)

Developing and Using Models
- Use a model to describe phenomena. (MS-PS1-7)

Disciplinary Core Ideas

MS-PS1.8: Chemical Reactions
- Some chemical reactions release energy, others store energy. (MS-PS1-6)

Grade 6 MS-PS2 Motion and Stability: Forces and Interactions

MS-PS2-4. Use evidence to support the claim that gravitational interactions are attractive and are only noticeable when one or both of the objects have a very large mass. [Clarification Statement: Examples of objects with very large masses include the Earth, Sun, and other planets.] [Assessment Boundary: Assessment does not include Newton’s Law of Gravitation or Kepler’s Laws.]

Science and Engineering Practices

Engaging in Argument from Evidence
- Construct and present oral and written arguments supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. (MS-PS2-4)

Disciplinary Core Ideas

PS2.8: Types of Interactions
- Gravitational forces are always attractive. There is a gravitational force between any two masses, but it is very small except when one or both of the objects have large mass—e.g., Earth and the sun. (MS-PS2-4)

Grade 6 MS-PS4 Waves and Their Applications in Technologies for Information Transfer

MS-PS4-1. Use diagrams of a simple wave to explain that a wave has a repeating pattern with a specific amplitude, frequency and wavelength. [Assessment Boundary: Assessment does not include electromagnetic waves and is limited to standard repeating waves.]

MS-PS4-2. Use diagrams and other models to show that both light rays and mechanical waves are reflected, absorbed, or transmitted through various materials. [Clarification Statement: Materials may include solids, liquids, and gasses. Mechanical waves (including sound) need a material (medium) through which they are transmitted. Examples of models could include drawings, simulations, and written descriptions.]

MS-PS4-3. Present qualitative scientific and technical information to support the claim that digitized signals (sent as wave pulses representing 0s and 1s) can be used to encode and transmit information. [Assessment Boundary: Assessment does not include binary counting nor the specific mechanism of any given device.]

Science and Engineering Practices

Developing and Using Models
- Develop and use a model to describe phenomena. (MS-PS4-2)

Disciplinary Core Ideas

PS4.A: Wave Properties
- A simple wave has a repeating pattern with a specific wavelength, frequency, and amplitude. (MS-PS4-1)
- A sound wave needs a medium through which it is transmitted. (MS-PS4-2)

PS4.B: Electromagnetic Radiation
- When light shines on an object, it is reflected, absorbed, or transmitted through the object. (MS-PS4-2)

PS4.C: Information Technologies and Instrumentation
- Digitized signals (sent as wave pulses) are a more reliable way to encode and transmit information. (MS-PS4-3)
Grade 6: Technology/Engineering

Grade 6 MS-ETS1 Engineering Design

MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution. Include potential impacts on people and the natural environment that may limit possible solutions.*

MS-ETS1-5(MA). Create visual representations of solutions to a design problem. Accurately interpret and apply scale and proportion to visual representations.* [Clarification Statement: Examples of visual representations can include sketches, scaled drawings, and orthographic projections. Examples of scale can include ¼” = 1’0”, 1 cm = 1 m.]

MS-ETS1-6(MA). Communicate a design solution to an intended user, including design features and limitations of the solution. [Clarification Statement: Examples of intended users can include students, parents, teachers, manufacturing personnel, engineers, and customers.]

Note: MS-ETS1-2, MS-ETS1-4, and MS-ETS1-7(MA) are found in Grade 7. MS-ETS1-3 from NGSS is not included.

The performance expectations above were developed using the following elements from the NRC document _A Framework for K-12 Science Education:_

Science and Engineering Practices

* **Asking Questions and Defining Problems**
 - Define a design problem that can be solved through the development of an object, tool, process or system and includes multiple criteria and constraints, including scientific knowledge that may limit possible solutions. (MS-ETS1-1)

* **Obtaining, Evaluating, and Communicating Information**
 - Communicate scientific and/or technical information (e.g. about a proposed object, tool, process, system) in writing and/or through oral presentations. (MS-ETS1-2)

* **Planning and Carrying Out Investigations**
 - Plan an investigation individually and collaboratively, and in the design: identify independent and dependent variables and controls, what tools are needed to do the gathering, how measurements will be recorded, and how many data are needed to support a claim. (MS-ETS2-2), (MS-ETS2-3)

* **Analyzing and Interpreting Data**
 - Analyze and interpret data to determine similarities and differences in findings. (MS-ETS2-1)

Disciplinary Core Ideas

ETS1.A: Defining and Delimiting Engineering Problems
- The more precisely a design task's criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that are likely to limit possible solutions. (MS-ETS1-1)

Science and Engineering Practices

Grade 6 MS-ETS2 Materials, Tools and Manufacturing

MS-ETS2-1(MA). Analyze and compare properties of metals, plastics, wood and ceramics, including stiffness, strength, ductility, hardness, thermal conductivity, electrical conductivity, and melting point.

MS-ETS2-2(MA). Given a design task, select appropriate materials based on specific properties needed in the construction of a solution. [Clarification Statement: Examples of materials can include metals, plastics, wood, and ceramics.]

MS-ETS2-3(MA). Choose and safely use appropriate measuring tools, hand tools, fasteners and common power tools used to construct a prototype.* [Clarification Statement: Examples of measuring tools include a tape measure, a meter stick, and a ruler. Examples of hand tools include a hammer, a screwdriver, a wrench and pliers. Examples of fasteners include nails, screws, nuts and bolts, staples, glue, and tape. Examples of common power tools include jig saw, drill, and sander.]

MS-ETS2-4(MA). Analyze the shape, form, size and materials of a designed object to infer the function for which it was designed.

Note: MS-ETS2-5(MA), MS-ETS2-6(MA), and MS-ETS2-7(MA) are found in Grade 8.

The performance expectations above were developed using the following elements from the NRC document _A Framework for K-12 Science Education:_

Disciplinary Core Ideas

Massachusetts Draft Revised Science and Technology/Engineering Standards, December 2013

Available at www.doe.mass.edu/STEM/review.html; Submit input to mathscitenceech@doe.mass.edu
Grade 7: Overview

Systems and Cycles

Students in grade 7 focus on systems and cycles to build a systems perspective using their understanding of structures and elements developed in earlier grades. A focus on systems requires students to interpret information and apply concepts and skills in the broad context of the discipline, and thus make connections between different domains of knowledge. Standards in grade 7 highlight interdisciplinary connections within and across domains since most natural and designed systems and cycles are complex and interactive. Students begin a process of building expert knowledge, moving from a more concrete to an abstract perspective and creating a foundation for exploring cause and effect relationships in more depth in grade 8. They have experience in observing structure of cells, body systems, matter, the Earth, measuring changes in energy, and applying these ideas to systems and cycles that span domains.

Grade 7: Earth and Space Sciences

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing and Using Models</td>
<td>ESS2.A: Earth's Materials and Systems</td>
</tr>
<tr>
<td>▪ Develop a model to describe unobservable mechanisms. (MS-ESS2-4)</td>
<td>▪ The planet's systems interact over scales that range from microscopic to global in size, and they operate over fractions of a second to billions of years. These interactions have shaped Earth's history and will determine its future. (MS-ESS2-2)</td>
</tr>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
<td>ESS2.C: The Roles of Water in Earth's Surface Processes</td>
</tr>
<tr>
<td>▪ Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students' own experiments) and the assumption that theories and laws that describe nature operate today as they did in the past and will continue to do so in the future. (MS-ESS2-2)</td>
<td>▪ Global movements of water and its changes in form are propelled by sunlight and gravity. (MS-ESS2-4)</td>
</tr>
</tbody>
</table>

Grade 7 MS-ESS2 Earth's Systems

MS-ESS2-2. Construct an explanation based on evidence for how Earth’s surface has changed over scales that range from microscopic to global in size and operate at times ranging from fractions of a second to billions of years. [Clarification Statement: Examples of processes occurring over large spatial and time scales include plate motion and ice ages. Examples of changes occurring over small spatial and time scales include earthquakes and seasonal weathering and erosion.]

MS-ESS2-4. Develop a model to explain how the energy of the sun and Earth’s gravity drive the cycling of water, including changes of state, as it moves through multiple pathways in Earth’s hydrosphere. [Clarification Statement: Examples of models can be conceptual or physical.] [Assessment Boundary: A quantitative understanding of the latent heats of vaporization and fusion is not assessed.]

[Note: MS-ESS2-3 is found in Grade 6. MS-ESS2-5 and MS-ESS2-6 are found in Grade 8.]

The performance expectations above were developed using the following elements from the NRC document: A Framework for K-12 Science Education.

Science and Engineering Practices

- **Developing and Using Models**
 - Develop a model to describe unobservable mechanisms. (MS-ESS2-4)
- **Constructing Explanations and Designing Solutions**
 - Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students' own experiments) and the assumption that theories and laws that describe nature operate today as they did in the past and will continue to do so in the future. (MS-ESS2-2)

Disciplinary Core Ideas

- **ESS2.A: Earth's Materials and Systems**
 - The planet's systems interact over scales that range from microscopic to global in size, and they operate over fractions of a second to billions of years. These interactions have shaped Earth's history and will determine its future. (MS-ESS2-2)
- **ESS2.C: The Roles of Water in Earth's Surface Processes**
 - Global movements of water and its changes in form are propelled by sunlight and gravity. (MS-ESS2-4)

Grade 7 MS-ESS3 Earth and Human Activity

MS-ESS3-1. Interpret data to explain that the Earth's mineral, fossil fuel, and groundwater resources are unevenly distributed as a result of geologic processes. [Clarification Statement: Examples of uneven distributions of resources can include petroleum (locations of the burial of organic marine sediments and subsequent geologic traps), metal ores (locations of past volcanic and hydrothermal activity associated with subduction zones), and soil (locations of active weathering and/or deposition of rock).]

MS-ESS3-2. Obtain and communicate information on how data from past geologic events are analyzed for patterns and used to forecast the location and likelihood of future catastrophic events. [Clarification Statement: Geologic events include earthquakes, volcanic eruptions, floods, and landslides. Examples of data typically analyzed can include the locations, magnitudes, and frequencies of the natural hazards.] [Assessment Boundary: Assessment does not include analysis of data nor forecasting.]

MS-ESS3-4. Construct an argument supported by evidence that human activities and technologies can be engineered to mitigate the negative impact of increases in human population and per capita consumption of natural resources on the environment. [Clarification Statement: Arguments should be based on examining historical data such as population graphs, natural resource distribution maps, and water quality studies over time. Examples of negative impacts can include changes to the amount and quality of natural resources such as water, mineral, and energy supplies.] [Assessment Boundary: A quantitative understanding of the latent heats of vaporization and fusion is not assessed.]

[Note: MS-ESS3-5 is found in Grade 8. MS-ESS3-3 from NGSS has been merged with MS-ESS3-4.]

The performance expectations above were developed using the following elements from the NRC document: A Framework for K-12 Science Education:

Science and Engineering Practices

- **Constructing Explanations and Designing Solutions**
 - Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students' own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (MS-ESS3-1)
- **Engaging in Argument from Evidence**
 - Construct an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. (MS-ESS3-4)
- **Obtaining, Evaluating, and Communicating Information**
 - Critically read scientific texts adapted for classroom use to determine the central ideas and/or obtain scientific and/or technical information to describe patterns in and/or evidence about the natural and designed world(s). (MS-ESS3-2)
 - Communicate scientific and/or technical information (e.g. about a proposed object, tool, process, system) in writing and/or through oral presentations. (MS-ESS3-2)

Disciplinary Core Ideas

- **ESS3.A: Natural Resources**
 - These resources are distributed unevenly around the planet as a result of past geologic processes. (MS-ESS3-1)
- **ESS3.B: Natural Hazards**
 - Mapping the history of natural hazards in a region, combined with an understanding of related geologic forces can help forecast the locations and likelihoods of future events. (MS-ESS3-2)
- **ESS3.C: Human Impacts on Earth Systems**
 - Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise. (MS-ESS3-4)
Grade 7 MS-LS1 From Molecules to Organisms: Structures and Processes

MS-LS1-3. Develop an argument supported by evidence that the body systems interact to carry out key body functions, including providing nutrients and oxygen to cells, removing carbon dioxide and waste from cells and the body, controlling body motion/activity and coordination, and protecting the body. [Clarification Statement: Body systems to be included are the circulatory, excretory, digestive, respiratory, muscular/skeletal and nervous systems. Emphasis is on the function and interactions of the body systems, not specific body parts or organs.] [Assessment Boundary: Assessment does not include the mechanism of one body system independent of others.]

MS-LS1-4. Explain, based on evidence, how characteristic animal behaviors as well as specialized plant structures increase the probability of successful reproduction of animals and plants respectively. [Clarification Statement: Examples of animal behaviors that select the probability of animal reproduction could include nest building to protect young from cold, herding of animals to protect young from predators, and vocalization of animals and colorful plumage to attract mates for breeding. Examples of animal behaviors that affect the probability of plant reproduction could include transferring pollen or seeds; and, creating conditions for seed germination and growth. Examples of plant structures that affect the probability of plant reproduction could include bright flowers attracting butterflies that transfer pollen, flower nectar and odors that attract insects that transfer pollen, and hard shells on nuts that squirrels bury.] [Assessment Boundary: Assessment does not include natural selection.]

Science and Engineering Practices

Engaging in Argument from Evidence

- Use an oral and written argument supported by evidence to support or refute an explanation or a model for a phenomenon. (MS-LS1-3)
- Use an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. (MS-LS1-4)

Disciplinary Core Ideas

LS1A: Structure and Function

- In multicellular organisms, the body is a system of multiple interacting subsystems. These subsystems ... work together ... for particular body functions. (MS-LS1-3)

LS1B: Growth and Development of Organisms

- Plants reproduce in a variety of ways, sometimes depending on animal behavior and specialized features for reproduction. (MS-LS1-4)

Grade 7 MS-LS2 Ecosystems: Interactions, Energy, and Dynamics

MS-LS2-1. Analyze and interpret data to provide evidence for the effects of periods of abundant and scarce resources on the growth of organisms and the number of organisms (size of populations) in an ecosystem.

MS-LS2-2. Describe how relationships among and between organisms in an ecosystem can be competitive, predatory, parasitic, and mutually beneficial and that these interactions are found across multiple ecosystems. [Clarification Statement: Emphasis is on describing consistent patterns of interactions in different ecosystems in terms of relationships among and between organisms.]

MS-LS2-3. Develop a model to describe the cycling of matter among living and nonliving parts of an ecosystem including through the process of photosynthesis and cellular respiration. [Clarification Statement: Emphasis is on a general understanding of cycling of matter in an ecosystem.] [Assessment Boundary: Assessment does not include cycling of specific atoms (such as carbon or oxygen), nor the biochemical steps of photosynthesis or cellular respiration.]

MS-LS2-4. Analyze data to provide evidence that disruptions (natural or human-made) to any physical or biological component of an ecosystem can lead to shifts in all its populations. [Clarification Statement: Focus should be on ecosystems characteristics varying over time, including disruptions such as hurricanes, floods, wildfires, oil spills, and construction.]

MS-LS2-5. Evaluate competing design solutions for protecting an ecosystem. Discuss benefits and limitations of each design. [Clarification Statement: Examples of design solutions could include water, land, and species protection, and the prevention of soil erosion. Examples of design solution constraints could include scientific, economic, and social considerations.]

MS-LS2-6(MA). Explain how changes to the biodiversity of an ecosystem—the variety of species found in the ecosystem—may limit the availability of resources humans use. [Clarification Statement: Examples of resources can include food, energy, medicine, and clean water.]

MS-LS2-7(MA). Construct a model of a food web to explain that energy is transferred among producers, primary, secondary, and tertiary consumers, and decomposers as they interact within an ecosystem. [Clarification Statement: Student should be able to predict changes in relative sizes of populations based on food webs.]

The performance expectations above were developed using the following elements from the NRC document: A Framework for K-12 Science Education.

Science and Engineering Practices

Developing and Using Models

- Develop a model to describe phenomena. (MS-LS2-3)

Analyzing and Interpreting Data

- Analyze and interpret data to provide evidence for phenomena. (MS-LS2-1)

Constructing Explanations and Designing Solutions

- Construct an explanation that includes qualitative or quantitative relationships between variables that predict phenomena. (MS-LS2-2)

Engaging in Argument from Evidence

- Analyze and interpret data to provide evidence for phenomena. (MS-LS2-1)

- Evaluate competing design solutions based on jointly developed and agreed-upon design criteria. (MS-LS2-5)

Disciplinary Core Ideas

LS2A: Interdependent Relationships in Ecosystems

- Organisms, and populations of organisms, are dependent on their environmental interactions both with other living things and with nonliving factors. (MS-LS2-1)
- In any ecosystem, organisms and populations with similar requirements for food, water, oxygen, or other resources may compete with each other for limited resources, access to which consequently constrains their growth and reproduction. (MS-LS2-1)
- Growth of organisms and population increases are limited by access to resources. (MS-LS2-1)
- Similarly, predatory interactions may reduce the number of organisms or eliminate whole populations of organisms. Mutually beneficial interactions, in contrast, may become so interdependent that each organism requires the other for survival. Although the species involved in these competitive, predatory, and mutually beneficial interactions vary across ecosystems, the patterns of interactions of organisms with their environments, both living and nonliving, are shared. (MS-LS2-2)

LS2B: Cycle of Matter and Energy Transfer in Ecosystems

- Food webs are models that demonstrate how matter and energy is transferred between producers, consumers, and decomposers as the three groups interact within an ecosystem. (MS-LS2-7)
- Transfers of matter into and out of the physical environment occur at every level. Decomposers recycle nutrients from dead plant or animal matter back to the soil in terrestrial environments or to the water in aquatic environments. The atoms that make up the organisms in an ecosystem are cycled repeatedly between the living and nonliving parts of the ecosystem. (MS-LS2-3)

LS2C: Ecosystem Dynamics, Functioning, and Resilience

- Ecosystems are dynamic in nature; their characteristics can vary over time. Disruptions to any physical or biological component of an ecosystem can lead to shifts in all its populations. (MS-LS2-4)
- Biodiversity describes the variety of species found in Earth’s terrestrial and oceanic ecosystems. (MS-LS2-6)
| The completeness or integrity of an ecosystem's biodiversity is often used as a measure of its health. (MS-LS2-5) |
| Changes in biodiversity can influence humans' resources, such as food, energy, and medicines, as well as ecosystem services that humans rely on—for example, water purification and recycling. (secondary) (MS-LS2-5) |
| **LS4.D: Biodiversity and Humans** |
| Changes in biodiversity can influence humans' resources, such as food, energy, and medicines, as well as ecosystem services that humans rely on—for example, water purification and recycling. (secondary to MS-LS2-5 and MS-LS2-6) |
| **ETS1.B: Developing Possible Solutions** |
| There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem. (MS-LS2-5) |
Grade 7: Physical Science

Grade 7 MS-PS2 Motion and Stability: Forces and Interactions

| MS-PS2-3. Describe the effect of distance and magnitude of electric charge and current on the size of electromagnetic forces. [Clarification Statement: Includes both attractive and repulsive forces.] [Assessment Boundary: Assessment is limited to proportional reasoning and algebraic thinking.] |
| MS-PS2-5. Use scientific evidence to argue that fields exist between objects with mass, between magnetic objects, and between electrically charged objects that exert force on each other even though the objects are not in contact. [Assessment Boundary: Assessment is limited to electric and magnetic fields, and limited to qualitative evidence for the existence of fields.] |

[Note: MS-PS2-4 is found in Grade 6. MS-PS2-1 and MS-PS2-2 are found in Grade 8.]

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engaging in Argument from Evidence</td>
</tr>
<tr>
<td>• Construct, use, and/or present an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. (MS-PS2-5)</td>
</tr>
</tbody>
</table>

Disciplinary Core Ideas

<table>
<thead>
<tr>
<th>PS2.B: Types of Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Electric and magnetic (electromagnetic) forces can be attractive or repulsive, and their sizes depend on the magnitudes of the charges, currents, or magnetic strengths involved and on the distances between the interacting objects. (MS-PS2-3)</td>
</tr>
<tr>
<td>• Forces that act at a distance (electric and magnetic) can be explained by fields that extend through space and can be mapped by their effect on a test object (a ball, a charged object, or a magnet, respectively). (MS-PS2-5)</td>
</tr>
</tbody>
</table>

Grade 7 MS-PS3 Energy

| MS-PS3-1. Construct and interpret data and graphs to describe the relationships of among kinetic energy, mass, and speed of an object. [Clarification Statement: Examples could include riding a bicycle at different speeds and rolling different size rocks downhill.] [Assessment Boundary: Assessment is limited to relationships between kinetic energy vs. mass and kinetic energy vs. speed separate from each other.] |
| MS-PS3-2. Develop a model to describe the relationship between the relative position of objects interacting at a distance and their relative potential energy in the system. [Clarification Statement: Examples of objects within systems interacting at varying distances could include: the Earth and either a roller coaster cart at varying positions on a hill or objects at varying heights on shelves, changing the direction/orientation of a magnet, and a balloon with static electrical charge being brought closer to a stream of water. Examples of models could include representations, diagrams, pictures, and written descriptions of systems.] [Assessment Boundary: Assessment is limited to two objects and electric, magnetic, and gravitational interactions, and does not include calculations of potential energy.] |
| MS-PS3-3. Apply scientific principles of energy and heat transfer to design, construct, and test a device to minimize or maximize thermal energy transfer.* [Clarification Statement: Examples of devices could include an insulated box, a solar cooker, and a styrofoam cup.] [Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred, nor account for specific heat.] |
| MS-PS3-4. Determine the relationships among the energy transferred, how well the type of matter retains or radiates heat, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. [Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred nor calculations of specific heat.] |
| MS-PS3-5. Present evidence to support the claim that when the motion energy of an object changes, energy is transferred to or from the object. [Clarification Statement: Examples of empirical evidence could include an inventory or other representation of the energy before and after the transfer in the form of temperature changes or motion of an object.] [Assessment Boundary: Assessment does not include calculations of energy.] |
| MS-PS3-6(MA). Explain how thermal energy is transferred out of hotter regions or objects and into colder ones by convection, conduction and radiation. |
| MS-PS3-7(MA). Describe the relationship between kinetic and potential energy and describe conversions from one form to another. [Clarification Statement: Types of kinetic energy include motion, sound, and radiation; types of potential energy include gravitational, elastic, and chemical.] |

The performance expectations above were developed using the following elements from the NRC document: A Framework for K–12 Science Education.

Disciplinary Core Ideas

<table>
<thead>
<tr>
<th>PS3.A: Definitions of Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Motion energy is properly called kinetic energy; it is proportional to the mass of the moving object and grows with the square of its speed. (MS-PS3-1)</td>
</tr>
<tr>
<td>• A system of objects may also contain stored (potential) energy, depending on their relative positions. (MS-PS3-2)</td>
</tr>
<tr>
<td>• Temperature is a measure of the average kinetic energy of particles of matter. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter present. (MS-PS3-4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PS3.B: Conservation of Energy and Energy Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>• When the motion energy of an object changes, there is inevitably some other change in energy at the same time. (MS-PS3-5)</td>
</tr>
<tr>
<td>• Energy is transferred out of hotter regions or objects and into colder ones by the processes of conduction, convection, and radiation. (MS-PS3-3). (MS-PS3-6)</td>
</tr>
<tr>
<td>• The amount of energy transfer needed to change the temperature of a matter sample by a given amount depends on the nature of the matter, the size of the sample, and the environment. (MS-PS3-4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PS3.C: Relationship Between Energy and Forces</th>
</tr>
</thead>
<tbody>
<tr>
<td>• When two objects interact, each one exerts a force on the other that can cause energy to be transferred to or from the object. (MS-PS3-2)</td>
</tr>
</tbody>
</table>

Common Core State Standards Connections:

<table>
<thead>
<tr>
<th>ELA/Literacy –</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHST.6-8.1 Write arguments focused on discipline content. (MS-PS3-5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mathematics –</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.RP.A.1 Understand the concept of ratio and use ratio language to describe a ratio relationship between two quantities. (MS-PS3-1)</td>
</tr>
<tr>
<td>6.RP.A.2 Understand the concept of a unit rate a/b associated with a ratio a:b with b ≠ 0, and use rate language in the context of a ratio relationship. (MS-PS3-1)</td>
</tr>
<tr>
<td>7.RP.A.2 Recognize and represent proportional relationships between quantities. (MS-PS3-1),(MS-PS3-5)</td>
</tr>
</tbody>
</table>

Massachusetts Draft Revised Science and Technology/Engineering Standards, December 2013

Available at www.doe.mass.edu/STEM/review.html; Submit input to mathscitenceech@doe.mass.edu
Grade 7: Technology/Engineering

Science and Engineering Practices

Disciplinary Core Ideas

<table>
<thead>
<tr>
<th>ETS1.B: Developing Possible Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>- A solution needs to be tested, and then modified on the basis of the test results, in order to improve it. (MS-ETS1-4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ETS1.C: Optimizing the Design Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>- The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (MS-ETS1-4)</td>
</tr>
</tbody>
</table>

Grade 7 MS-ETS1 Engineering Design

- **MS-ETS1-2.** Evaluate competing solutions to a given design problem using a systematic process to determine how well each meets the criteria and constraints of the problem. Use a model of each solution to evaluate how variations in one or more design features, including size, shape, weight, or cost, may affect the function or effectiveness of the solution.*

- **MS-ETS1-4.** Generate and analyze data from iterative testing and modification of a proposed object, tool, or process to optimize the object, tool, or process for its intended purpose.*

- **MS-ETS1-7(MA).** Construct a prototype of a solution to a given design problem.*

[Note: MS-ETS1-1, MS-ETS1-5(MA), and MS-ETS1-6(MA) are found in Grade 6. MS-ETS1-3 from NGSS is not included.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education.*

Grade 7 MS-ETS3 Technological Systems

<table>
<thead>
<tr>
<th>ETS3.B: Understanding and Using Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Research and communicate information about how transportation systems are designed to move people and goods using a variety of vehicles and devices. Identify and describe subsystems of a transportation vehicle, including structural, propulsion, guidance, suspension, and control subsystems. [Clarification Statement: Examples of design elements include vehicle shape and cargo or passenger capacity, terminals, travel lanes, and communications/controls. Examples of vehicles can include a car, sailboat, and small airplane.]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ETS3.C: Evaluating and Improving Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Show how the components of a structural system work together to serve a structural function or maintain and environment for a particular human use. Provide examples of physical structures and relate their design to their intended use. [Clarification Statement: Examples of uses include carrying loads and forces across a span (such as a bridge), providing livable space (such as a house or office building), or providing specific environmental conditions (such as a greenhouse or cold storage). Examples of components of a structural system could include foundation, decking, wall, roofing, inputs (such as heat or AC), and feedback mechanisms.]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ETS3.D: Designing and Building Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Use the concept of systems engineering to: a. analyze how components of a transportation, structural or communication system work together or affect each other, and b. model the inputs, processes, outputs, and feedback of a technological system.</td>
</tr>
</tbody>
</table>

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education.*

Science and Engineering Practices

Constructing Explanations and Designing Solutions

- Construct an explanation using models or representations. (MS-ETS3-1)

Developing and Using Models

- Develop a model to show the relationships among variables. (MS-ETS3-4)
- Develop a model to generate data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales. (MS-ETS3-5)

Obtaining, Evaluating, and Communicating Information

- Critically read scientific texts adapted for classroom use to determine the central ideas and/or obtain scientific and/or technical information to describe patterns in and/or evidence about the natural and designed world(s). (MS-ETS3-3)
- Communicate scientific and/or technical information (e.g. about a proposed object, tool, process, system) in writing and/or through oral presentations. (MS-ETS3-3)
Grade 8: Overview

Cause and Effect
Grade 8 students use more robust abstract thinking skills to explain causes of the more complex phenomena and systems. Many causes are not immediately or physically visible to students. Students wrestle with the “why” of science, to deal with unseen mechanisms at work, to make predictions about future events, and to explain patterns. In grade 8 these include, for example, causes of seasons and tides, causes of plate tectonics and weather or climate, the role of genetics in heredity and natural selection, and understanding interactions of atoms and molecules (from a more general particulate model in prior grades). Being able to analyze phenomena for evidence of causes and processes that often cannot be seen, and being able to conceptualize and describe those, is a significant cognitive transition for students in grade 8.

Grade 8: Earth and Space Sciences

<table>
<thead>
<tr>
<th>Grade 8</th>
<th>MS-ESS1</th>
<th>Earth’s Place in the Universe</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-ESS1-1b.</td>
<td>Develop and use a model of the Earth-sun system to explain the cyclical pattern of seasons, which includes the Earth’s tilt and differential intensity of sunlight on different areas of Earth across the year.</td>
<td>[Clarification Statement: Examples of models can be physical, graphical, or conceptual.]</td>
</tr>
<tr>
<td>MS-ESS1-2.</td>
<td>Explain the role of gravity in ocean tides, the orbital motions of planets, their moons, and asteroids in the solar system.</td>
<td>[Assessment Boundary: Assessment does not include Kepler’s Laws of orbital motion or the apparent retrograde motion of the planets as viewed from Earth.]</td>
</tr>
</tbody>
</table>

[Note: MS-ESS1-1a, MS-ESS1-4, MS-ESS1-5 and MS-ESS1-6 are found in Grade 6. MS-ESS1-3 from NGSS is not included.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing and Using Models 1.</td>
<td>ESS1.A: The Universe and Its Stars</td>
</tr>
<tr>
<td>• Develop and use a model to describe phenomena. (MS-ESS1-1), (MS-ESS1-2)</td>
<td>• Patterns of the apparent motion of the sun, the moon, and stars in the sky can be observed, described, predicted, and explained with models. (MS-ESS1-1)</td>
</tr>
<tr>
<td></td>
<td>ESS1.B: Earth and the Solar System</td>
</tr>
<tr>
<td></td>
<td>• The solar system consists of the sun and a collection of objects, including planets, their moons, and asteroids that are held in orbit around the sun by its gravitational pull on them. (MS-ESS1-2)</td>
</tr>
<tr>
<td></td>
<td>• This model of the solar system can explain eclipses of the sun and the moon. Earth’s spin axis is fixed in direction over the short-term but tilted relative to its orbit around the sun. The seasons are a result of that tilt and are caused by the differential intensity of sunlight on different areas of Earth across the year. (MS-ESS1-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade 8</th>
<th>MS-ESS2</th>
<th>Earth’s Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-ESS2-1.</td>
<td>Develop and use a model to illustrate that energy from the Earth’s interior drives convection which cycles Earth’s crust leading to melting, crystallization, weathering and deformation of large rock formations, including generation of ocean sea floor at ridges, submergence of ocean sea floor at trenches, mountain building and active volcanic chains.</td>
<td>[Clarification Statement: The emphasis is on large-scale cycling resulting from plate tectonics that includes changes in rock types through erosion, heat and pressure.] [Assessment Boundary: Assessment does not include specific mechanisms of plate tectonics, the identification and naming of minerals or rock types, nor rote memorization of the “rock cycle.”]</td>
</tr>
<tr>
<td>MS-ESS2-5.</td>
<td>Interpret basic weather data to identify patterns in air mass interactions and the relationship of those patterns to weather.</td>
<td>[Clarification Statement: Data includes temperature, pressure, humidity, precipitation, and wind. Examples of patterns can include air masses flow from regions of high pressure to low pressure, how sudden changes in weather can result when different air masses collide. Data can be provided to students (such as weather maps, diagrams, and visualizations) or obtained through field observations or laboratory experiments.] [Assessment Boundary: Assessment does not include recalling the names of cloud types or weather symbols used on weather maps or the reported diagrams from weather stations.]</td>
</tr>
<tr>
<td>MS-ESS2-6.</td>
<td>Describe how interactions involving the ocean affect weather and climate on a regional scale, including the influence of the ocean temperature as mediated by energy input from the sun and energy loss due to evaporation or redistribution via ocean currents.</td>
<td>[Clarification Statement: Emphasis of ocean circulation is on the transfer of heat by the global ocean convection cycle, which is constrained by the Coriolis effect and the outlines of continents. A regional scale includes a state or multi-state perspective.] [Assessment Boundary: Assessment does not include Koppen Climate Classification names.]</td>
</tr>
</tbody>
</table>

[Note: MS-ESS2-3 is found in Grade 6. MS-ESS2-2 and MS-ESS2-4 are found in Grade 7.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.
Science and Engineering Practices

Developing and Using Models
- Develop and use a model to describe phenomena. (MS-ESS2-1)

Planning and Carrying Out Investigations
- Collect data to produce data to serve as the basis for evidence. (MS-ESS2-5)

Disciplinary Core Ideas

ESS1.C: The History of Planet Earth
- Tectonic processes continually generate new ocean sea floor at ridges and destroy old sea floor at trenches. (HS.ESS1.C GBE) (MS-ESS2-1)

ESS2.A: Earth Materials and Systems
- All Earth processes are the result of energy flowing and matter cycling within and among the planet’s systems. This energy is derived from the sun and Earth’s hot interior. The energy that flows and matter that cycles produce chemical and physical changes in Earth’s materials and living organisms. (MS-ESS2-1)
- (Moved; originally a grade 5 endpoint.) These systems interact in multiple ways to affect Earth’s surface materials and processes. The ocean shapes landforms, and influences climate. Winds and clouds in the atmosphere interact with the landforms to determine patterns of weather. (MS-ESS2-6)

ESS2.B: Plate Tectonics and Large-Scale System Interactions
- Plate tectonics is the unifying theory that explains the past and current movements of the rocks at Earth’s surface and provides a framework for understanding its geologic history. Plate movements are responsible for most continental and ocean-floor features. (MS-ESS2-1)

ESS2.C: The Roles of Water in Earth’s Surface Processes
- The complex patterns of the changes and the movement of water in the atmosphere, determined by winds, landforms, and ocean temperatures and currents, are major determinants of local weather patterns. (MS-ESS2-5), (MS-ESS2-6)

ESS2.D: Weather and Climate
- The ocean exerts a major influence on weather and climate by absorbing energy from the sun, releasing it over time, and globally redistributing it through ocean currents. (MS-ESS2-6)

Grade 8 MS-ESS3 Earth and Human Activity

MS-ESS3-5. Examine and interpret data to describe the role that human activities have played in causing the rise in global temperatures over the past century. ([Clarification Statement: Examples of human activities include fossil fuel combustion, cement production, and agricultural activity. Examples of evidence can include tables, graphs, and maps of global and regional temperatures, atmospheric levels of gases such as carbon dioxide and methane, and the rates of human activities.])

[Note: MS-ESS3-1, MS-ESS3-2 and MS-ESS3-4 are found in Grade 7. MS-ESS3-3 from NGSS has been merged with MS-ESS3-4.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Analyzing and Interpreting Data
- Distinguish between causal and correlational relationships in data. (MS-ESS3-5)

Disciplinary Core Ideas

ESS3.D: Global Climate Change
- Human activities, such as the release of greenhouse gases from burning fossil fuels, are major factors in the current rise in Earth’s mean surface temperature (global warming). Reducing the level of climate change and reducing human vulnerability to whatever climate changes do occur depend on the understanding of climate science, engineering capabilities, and other kinds of knowledge, such as understanding of human behavior and on applying that knowledge wisely in decisions and activities. (MS-ESS3-5)
Grade 8 MS-LS1 From Molecules to Organisms: Structures and Processes

MS-LS1-5. Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. [Clarification Statement: Examples of local environmental conditions could include availability of food, light, space, and water. Examples of genetic factors could include the genes responsible for size differences in different breeds of dogs, such as Great Danes and Chihuahuas. Examples of environmental factors could include drought decreasing plant growth, fertilizer increasing plant growth, and fish growing larger in large ponds than they do in small ponds. Examples of both genetic and environmental factors could include different varieties of plants growing at different rates in different conditions.] [Assessment Boundary: Assessment does not include the methods of reproduction, genetic mechanisms, gene regulation, biochemical processes, or natural selection.]

MS-LS1-7. Describe that food molecules, including carbohydrates, proteins, and fats, are broken down and rearranged through chemical reactions forming new molecules that support growth and/or release energy. [Clarification Statement: Emphasis is on describing that molecules are broken apart and rearranged and that in these processes result in cell growth and energy release.] [Assessment Boundary: Assessment does not include the details of the chemical reactions for respiration, biochemical steps of breaking down food, or the resulting molecules (e.g., carbohydrates are broken down into monosaccharides.)]

[Note: MS-LS1-1 and MS-LS1-2 are found in Grade 6. MS-LS1-3 and MS-LS1-4 are found in Grade 7. MS-LS1-6 and MS-LS1-8 from NGSS are not included.]

Science and Engineering Practices

<table>
<thead>
<tr>
<th>Constructing Explanations and Designing Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Develop and use a model to describe that structural changes to genes (mutations) may or may not result in changes to proteins, and if there are changes to proteins there may be harmful, beneficial, or neutral changes to traits. [Clarification Statement: An example of a beneficial change to the organism may be a strain of bacteria becoming resistant to an antibiotic. A harmful change could be the development of cancer; a neutral change may change the hair color of an organism with no direct consequence.] [Assessment Boundary: Assessment does not include specific changes at the molecular level (e.g., amino acid sequence change), mechanisms for protein synthesis, or specific types of mutations.]</td>
</tr>
<tr>
<td>• Develop and use a model to describe how asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. Compare and contrast advantages and disadvantages of asexual and sexual reproduction. [Clarification Statement: Examples of models can include Punnett squares, diagrams, and simulations. Examples of an advantage of sexual reproduction can include genetic variation when the environment changes or a disease is introduced, while examples of an advantage of asexual reproduction can include not using energy to find a mate and fast reproduction rates. Examples of a disadvantage of sexual reproduction can include using resources to find a mate, while a disadvantage in asexual reproduction can be the lack of genetic variation when the environment changes or a disease is introduced.]</td>
</tr>
<tr>
<td>• Develop and use a model to show that in sexually reproducing organisms individuals have two of each chromosome, and hence two alleles of each gene, that are acquired (randomly) from each parent. [Clarification Statement: Examples of models can include Punnett squares, diagrams, and simulations.] [Assessment Boundary: Assessment should only include dominant-recessive pattern of inheritance.]</td>
</tr>
</tbody>
</table>

Disciplinary Core Ideas

LS1.B: Growth and Development of Organisms

• Genetic factors as well as local conditions affect the growth of the adult plant. (MS-LS1-5)

• Within individual organisms, food moves through a series of chemical reactions in which it is broken down and rearranged to form new molecules, to support growth, or to release energy. (MS-LS1-7)

PS3.D: Energy in Chemical Processes and Everyday Life

• Cellular respiration in plants and animals involve chemical reactions with oxygen that release stored energy. In these processes, complex molecules containing carbon react with oxygen to produce carbon dioxide and other materials. (secondary to MS-LS1-7)
Grade 8 MS-LS4 Biological Evolution: Unity and Diversity

MS-LS4-4. Explain the mechanism of natural selection, in which genetic variations of some traits in a population increase some individuals' likelihood of surviving and reproducing in a changing environment. Provide evidence that natural selection occurs over many generations. [Clarification Statement: Explanations should include simple probability statements and proportional reasoning.]

MS-LS4-5. Synthesize and communicate information about artificial selection, or the ways in which humans have changed the inheritance of desired traits in organisms. [Clarification Statement: Emphasis is on the influence of humans on genetic outcomes in artificial selection (such as genetic modification, animal husbandry, and gene therapy).]

[Note: MS-LS4-1 and MS-LS4-2 are found in Grade 6. MS-LS4-3 and MS-LS4-6 from NGSS are not included.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Constructing Explanations and Designing Solutions
- Apply scientific ideas to construct an explanation for real-world phenomena, examples, or events. (MS-LS4-4)
- Construct an explanation that includes qualitative or quantitative relationships between variables that describe phenomena. (MS-LS4-4)

Obtaining, Evaluating, and Communicating Information
- Gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or not supported by evidence. (MS-LS4-5)

Disciplinary Core Ideas

LS4.B: Natural Selection
- Natural selection leads to the predominance of certain traits in a population, and the suppression of others. (MS-LS4-4)
- In artificial selection, humans have the capacity to influence certain characteristics of organisms by selective breeding. One can choose desired parental traits determined by genes, which are then passed on to offspring. (MS-LS4-5)

LS4.C: Adaptation
- Adaptation by natural selection acting over generations is one important process by which species change over time in response to changes in environmental conditions. Traits that support successful survival and reproduction in the new environment become more common; those that do not become less common. Thus, the distribution of traits in a population changes. (MS-LS4-4)

Common Core State Standards Connections:

ELA/Literacy –
- RST.6-8.1 Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions (MS-LS4-5)
- WHST.6-8.8 Gather relevant information from multiple print and digital sources; assess the credibility of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and providing basic bibliographic information for sources. (MS-LS4-5)

Mathematics –
- 6.RP.A.1 Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. (MS-LS4-4)
- 7.RP.A.2 Recognize and represent proportional relationships between quantities. (MS-LS4-4)
Science and Engineering Practices

Developing and Using Models
- Develop a model to predict and/or describe phenomena. (MS-PS1-1), (MS-PS1-4)
- Develop a model to describe unobservable mechanisms. (MS-PS1-5)

Analyzing and Interpreting Data
- Analyze and interpret data to determine similarities and differences in findings. (MS-PS1-2)

Engaging in Argument from Evidence
- Present an argument supported by empirical evidence and scientific reasoning to support an explanation for a phenomenon. (MS-PS1-9)

Disciplinary Core Ideas

- Substances are made from some 100 different types of atoms, which combine with one another in various ways. Atoms form molecules that range in size from two to thousands of atoms. (MS-PS1-1)
- Gases and liquids are made of molecules or inert atoms that are moving about. (MS-PS1-4)
- In a liquid, the molecules are constantly in contact with others, in a gas, they are widely spaced except when they happen to collide. In a solid, atoms are closely spaced and may vibrate in position but do not change relative locations. (MS-PS1-4)
- Solids may be formed from molecules, or they may be extended structures with repeating subunits (e.g., crystals). (MS-PS1-9)

PS1.B: Chemical Reactions
- Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-2), (MS-PS1-5)
- The total number of each type of atom is conserved, and thus the mass does not change. (MS-PS1-5)

PS3.A: Definitions of Energy
- The term “heat” as used in everyday language refers both to thermal motion (the motion of atoms or molecules within a substance) and radiation (particularly infrared and light). In science, heat is used only for this second meaning: it refers to energy transferred when two objects or systems are at different temperatures. (secondary to MS-PS1-4)
- Temperature is not a measure of energy; the relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter present. (secondary to MS-PS1-4)

Common Core State Standards Connections:
- Mathematics –
 6.NS.C.5 Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation. (MS-PS1-4)
 8.EE.A.3 Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. (MS-PS1-1)

Grade 8 MS-PS1 Matter and Its Interactions

MS-PS1-1. Develop a model to describe that elements combine in a multitude of ways to produce substances which make up all of the living and nonliving things that we encounter. (Clarification Statement: Examples of molecular-level models could include drawings, 3D ball and stick structures, or computer representations showing different molecules with different types of atoms.) [Assessment Boundary: Assessment does not include valence electrons and bonding energy, discussing the ionic nature of subunits of complex structures, or a complete depiction of all individual subunits of complex structures.]

MS-PS1-2. Analyze and interpret data on the properties of substances before and after a chemical reaction to determine if a chemical reaction has occurred. (Clarification Statement: Examples of reactions could include burning sugar or steel wool, fat reacting with sodium hydroxide, and mixing zinc with HCl. Properties of substances include: density, melting point, boiling point, solubility, flammability, and odor.)

MS-PS1-4. Develop a model that describes and predicts changes in particle motion, relative spatial arrangement, temperature, and state of a pure substance when thermal energy is added or removed. (Clarification Statement: Emphasis is on qualitative molecular-level models of solids, liquids, and gases to show that adding or removing thermal energy increases or decreases kinetic energy of the particles until a change of state occurs. Examples of models could include drawings and diagrams. Examples of pure substances could include water, carbon dioxide, and helium.)

MS-PS1-5. Use a model to explain that substances are rearranged during a chemical reaction to form new molecules with new properties. Explain that the atoms present in the reactants are all present in the products and thus the total number of atoms is conserved. (Clarification Statement: Examples of models can include physical models or drawings, including digital forms, that represent atoms.) [Assessment Boundary: Assessment does not include the use of atomic masses, balancing symbolic equations, or intermolecular forces.]

MS-PS1-9(MA). Present evidence to support the claims that: a. substances are composed of molecules, compounds or atoms; and b. atoms form molecules that range in size from two to thousands of atoms.

[Note: MS-PS1-6, MS-PS1-7(MA), and MS-PS1-8(MA) are found in Grade 6. MS-PS1-3 from NGSS is not included.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.

Science and Engineering Practices

Developing and Using Models
- Develop a model to describe phenomena.

Disciplinary Core Ideas

PS2.A: Forces and Motion
- For any pair of interacting objects, the force exerted by the first object on the second object is equal in strength to the
Engaging in Argument from Evidence

- Present an argument supported by empirical evidence and scientific reasoning to support an explanation for a phenomenon. (MS-PS1-2)

- The motion of an object is determined by the sum of the forces acting on it; if the total force on the object is not zero, its motion will change. The greater the mass of the object, the greater the force needed to achieve the same change in motion. For any given object, a larger force causes a larger change in motion. (MS-PS2-2)

Common Core State Standards Connections:

Mathematics –

6.NS.C.5 Understand that positive and negative numbers are used together to describe quantities having opposite directions or values; use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation. (MS-PS2-1)

6.EE.A.2 Write, read, and evaluate expressions in which letters stand for numbers. (MS-PS2-1),(MS-PS2-2)

7.EE.B.3 Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form, using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. (MS-PS2-1),(MS-PS2-2)

7.EE.B.4 Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. (MS-PS2-1),(MS-PS2-2)
Grade 8: Technology/Engineering

Grade 8 MS-ETS2 Materials, Tools and Manufacturing

MS-ETS2-5(MA). Recognize that materials maintain their composition under various kinds of physical processing; however, some material properties may change if a process changes the particulate structure of a material.

[Clarification Statement: Examples of physical processing can include cutting, forming, extruding, and sanding. Examples of changes in material properties can include a non-magnetic iron material becoming magnetic after hammering or a plastic material becoming rigid (less elastic) after heat treatment.]

MS-ETS2-6(MA). Describe how a product can be created using basic processes in manufacturing systems, including forming, separating, conditioning, assembling, finishing, quality control, and safety.

MS-ETS2-7(MA). Recognize that processes that transform materials into products can be controlled by humans or by computers. [Clarification Statement: Computer-aided processes are robotic or automated manufacturing.]

[Note: MS-ETS2-1(MA), MS-ETS2-2(MA), MS-ETS2-3(MA), and MS-ETS2-4(MA) are found in Grade 6.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science and Engineering Practices</td>
<td>Disciplinary Core Ideas</td>
</tr>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
<td></td>
</tr>
<tr>
<td>* Construct an explanation using models or representations. (MS-ETS4-1)</td>
<td></td>
</tr>
</tbody>
</table>

Grade 8 MS-ETS4 Energy and Power Technologies

MS-ETS4-1(MA). Explain how a machine converts energy, through mechanical means, to do work.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science and Engineering Practices</td>
<td>Disciplinary Core Ideas</td>
</tr>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
<td></td>
</tr>
<tr>
<td>* Construct an explanation using models or representations. (MS-ETS4-1)</td>
<td></td>
</tr>
</tbody>
</table>
Earth and Space Science - HS-PS1 Matter and Its Interactions

HS-PS1-8. Develop a model to illustrate the changes in the composition of the nucleus of the atom and the energy released or absorbed during the processes of fission, fusion, and radioactive decay. [Clarification Statement: Examples of models include simple qualitative models, such as pictures or diagrams.] [Assessment Boundary: Assessment does not include quantitative calculation of energy released or absorbed. Assessment is limited to alpha, beta, and gamma radioactive decays.]

[Note: HS-PS1-1, HS-PS1-2, HS-PS1-3, HS-PS1-4, HS-PS1-5, HS-PS1-6, and HS-PS1-7 are found in Chemistry.]

The performance expectations above were developed using the following elements from the NRC document: A Framework for K-12 Science Education.

Science and Engineering Practices

Developing and Using Models
- Develop a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-PS1-8)

Disciplinary Core Ideas

PS1.C: Nuclear Processes
- Nuclear processes, including fusion, fission, and radioactive decays of unstable nuclei, involve release or absorption of energy. The total number of neutrons plus protons does not change in any nuclear process. (HS-PS1-8)

Earth and Space Science - HS-ESS1 Earth’s Place in the Universe

HS-ESS1-1. Explain that the life span of the sun over approximately 10 billion years is a function of nuclear fusion in its core.

HS-ESS1-2. Describe the astronomical evidence for the Big Bang theory, including the red shift of light from the motion of distant galaxies as an indication that the universe is currently expanding, the cosmic microwave background as the remnant radiation from the Big Bang, and the observed composition of ordinary matter of the universe, primarily found in stars and interstellar gases, which matches that predicted by the Big Bang theory (3/4 hydrogen and 1/4 helium).

HS-ESS1-3. Communicate that stars, through nuclear fusion over their life cycle, produce elements from Helium to Iron and release energy that eventually reaches Earth in the form of radiation. [Assessment Boundary: Details of the many different nucleosynthesis pathways for stars of differing masses are not assessed.]

HS-ESS1-4. Use Kepler’s Laws to predict the motion of orbiting objects in the solar system. Describe how orbits may change due to the gravitational effects from, or collisions with, other objects in the solar system. [Clarification Statement: Kepler’s Laws apply to human-made satellites as well as planets, moons and other objects.]

HS-ESS1-5. Evaluate evidence of the past and current movements of continental and oceanic crust, the theory of plate tectonics, and relative densities of oceanic and continental rocks to explain why continental rocks are generally much older than rocks of the ocean floor. [Clarification Statement: Examples include the ages of oceanic crust (less than 200 million years old) increasing with distance from mid-ocean ridges (a result of plate spreading) and the ages of North American continental crust (which can be older than 4 billion years) increasing with distance away from a central ancient core (a result of past plate interactions).]

HS-ESS1-7(MA). Analyze and interpret data to explain that long-term changes in Earth’s tilt and orbit result in cycles of climate change such as Ice Ages.

[Note: HS-ESS1-6 from NGSS is not included.]

The performance expectations above were developed using the following elements from the NRC document: A Framework for K-12 Science Education.

Science and Engineering Practices

Constructing Explanations and Designing Solutions
- Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (HS-ESS1-1), (HS-ESS1-2)

Obtaining, Evaluating, and Communicating Information
- Communicate scientific ideas (e.g., about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically). (HS-ESS1-3)

Using Mathematical and Computational Thinking
- Use mathematical or computational representations of phenomena to describe explanations. (HS-ESS1-4)

Analyzing and Interpreting Data
- Analyze and interpret data to provide evidence for phenomena. (HS-ESS1-7)

Disciplinary Core Ideas

ESS1.A: The Universe and Its Stars
- The star called the sun is changing and will burn out over a lifespan of approximately 10 billion years. (HS-ESS1-1)
- The Big Bang theory is supported by observations of distant galaxies receding from our own, of the measured composition of stars and non-stellar gases, and of the maps of spectra of the primordial radiation (cosmic microwave background) that still fills the universe. Added beyond NRC. (HS-ESS1-2)
- Other than the hydrogen and helium formed at the time of the Big Bang, nuclear fusion within stars produces all atomic nuclei lighter than and including iron, and the process releases electromagnetic energy. Added beyond NRC. (HS-ESS1-3)

ESS1.B: Earth and the Solar System
- Kepler’s laws describe common features of the motions of orbiting objects, including their elliptical paths around the sun. Orbits may change due to the gravitational effects from, or collisions with, other objects in the solar system. (HS-ESS1-4)

ESS1.C: The History of Planet Earth
- Continental rocks, which can be older than 4 billion years, are generally much older than the rocks of the ocean floor, which are less than 200 million years old. (HS-ESS1-5)

PS3.D: Energy in Chemical Processes and Everyday Life
- Nuclear Fusion processes in the center of the sun release the energy that ultimately reaches Earth as radiation. (secondary to HS-ESS1-3)

Common Core State Standards Connections:

Mathematics -
- HSN-Q.A.1: Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-ESS1-4)
- HSN-Q.A.2: Define appropriate quantities for the purpose of descriptive modeling. (HS-ESS1-4)
- HSA-CED.A.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-ESS1-4)

Massachusetts Draft Revised Science and Technology/Engineering Standards, December 2013
Available at www.doe.mass.edu/STEM/review.html; Submit input to mathscitenceech@doe.mass.edu
Earth and Space Science HS-ESS2 Earth’s Systems

HS-ESS2-2. Analyze geoscience data to make the claim that one change to Earth’s surface can create feedbacks that cause changes to other Earth’s systems. [Clarification Statement: Examples should include climate feedbacks, such as how an increase in greenhouse gases causes a rise in global temperatures that melts glacial ice, which reduces the amount of sunlight reflected from Earth’s surface, increasing surface temperatures and further reducing the amount of ice. Examples could also be taken from other system interactions, such as how the loss of ground vegetation causes an increase in water runoff and soil erosion; how dammed rivers increase groundwater recharge; decrease sediment transport, and increase coastal erosion; or how the loss of wetlands causes a decrease in local humidity that further reduces the wetland extent.]

HS-ESS2-3. Use a model based on evidence of Earth’s interior to describe the cycling of matter by thermal convection. [Clarification Statement: Emphasis is on both a one-dimensional model of Earth, with radial layers determined by density, and a three-dimensional model, which is controlled by mantle convection and the resulting plate tectonics. Examples of evidence include maps of Earth’s three-dimensional structure obtained from seismic waves, records of the rate of change of Earth’s magnetic field (as constraints on convection in the outer core), and identification of the composition of Earth’s layers from high-pressure laboratory experiments.]

HS-ESS2-4. Use a model to describe how variations in the flow of energy into and out of Earth’s systems result in changes in climate. [Clarification Statement: Examples of the causes of climate change differ by timescale, over 1-10 years: large volcanic eruption, ocean circulation; 10-100s of years: changes in human activity, ocean circulation, solar output; 10-100s of thousands of years: changes to Earth’s orbit and the orientation of its axis; and 10-100s of millions of years: long-term changes in atmospheric composition.] [Assessment Boundary: Assessment of the results of changes in climate is limited to changes in surface temperatures, precipitation patterns, glacial ice volumes, sea levels, and biosphere distribution.]

HS-ESS2-5. Describe how the chemical and physical properties of water are important in mechanical and chemical mechanisms that affect Earth materials and surface processes. [Clarification Statement: Examples of mechanical mechanisms involving water include stream transportation and deposition, erosion using variations in soil moisture content, or frost wedging by the expansion of water as it freezes. Examples of chemical mechanisms involving water include chemical weathering and recrystallization (based on solubility of different materials) or melt generation (based on water lowering the melting temperature of most solids).]

HS-ESS2-6. Use a model to describe the gradual atmospheric and climatic changes due to carbon capture and oxygen release by plants and due to increased carbon dioxide generation through human activity. [Note: HS-ESS2-1 has been merged with MS-ESS2-6, HS-ESS2-7 from NGSS is not included.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models
- Develop a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-6)
- Use a model to provide mechanistic accounts of phenomena. (HS-ESS2-4)

Analyzing and Interpreting Data
- Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims. (HS-ESS2-2)

Disciplinary Core Ideas

ESS1.B: Earth and the Solar System
- Cyclical changes in the shape of Earth’s orbit around the sun, together with changes in the tilt of the planet’s axis of rotation, both occurring over hundreds of thousands of years, have altered the intensity and distribution of sunlight falling on the earth. These phenomena cause a cycle of ice ages and other gradual climate changes. (secondary to HS-ESS2-4)

ESS2.A: Earth Materials and Systems
- Earth’s systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes. (HS-ESS2-1),(HS-ESS2-2)
- Evidence from deep probes and seismic waves, reconstructions of historical changes in Earth’s surface and its magnetic field, and an understanding of physical and chemical processes lead to a model of Earth with a hot but solid inner core, a liquid outer core, a solid mantle and crust. Motions of the mantle and its plates occur primarily through thermal convection, which involves the cycling of matter due to the outward flow of energy from Earth’s interior and gravitational movement of denser materials toward the interior. (HS-ESS2-3)

ESS2.C: The Roles of Water in Earth’s Surface Processes
- The abundance of liquid water on Earth’s surface and its unique combination of physical and chemical properties are central to the planet’s dynamics. These properties include water’s exceptional capacity to absorb, store, and release large amounts of energy, transmit sunlight, expand upon freezing, dissolve and transport materials, and lower the viscosities and melting points of rocks. (HS-ESS2-5)

ESS2.D: Weather and Climate
- The foundation for Earth’s global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere, ocean, and land systems, and this energy’s re-radiation into space. (HS-ESS2-4)
- Gradual atmospheric changes were due to plants and other organisms that captured carbon dioxide and released oxygen. (HS-ESS2-6)
- Changes in the atmosphere due to human activity have increased carbon dioxide concentrations and thus affect climate. (HS-ESS2-6)
- Current models predict that, although future regional climate changes will be complex and varied, average global temperatures will continue to rise. The outcomes predicted by global climate models strongly depend on the amounts of human-generated greenhouse gases added to the atmosphere each year and by the ways in which these gases are absorbed by the ocean and biosphere. (HS-ESS2-6)

Common Core State Standards Connections:
Mathematics –
HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-ESS2-2),(HS-ESS2-6)
HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-ESS2-6)

Massachusetts Draft Revised Science and Technology/Engineering Standards, December 2013
Available at www.doe.mass.edu/STEM/review.html; Submit input to mathscitenceech@doe.mass.edu
Earth and Space Science HS ESS3 Earth and Human Activity

HS-ESS3-1. Construct an explanation based on evidence for how the availability of key natural resources and changes due to variations in climate have influenced human activity. [Clarification Statement: Examples of key natural resources include access to fresh water (such as rivers, lakes, and groundwater), regions of fertile soils (such as river deltas), high concentrations of minerals and fossil fuels, and biotic resources (such as fisheries and forests). Examples of changes due to variations in climate include changes to sea level and regional patterns of temperature and precipitation.]

HS-ESS3-2. Evaluate competing design solutions for minimizing impacts of developing and using energy and mineral resources, and conserving and recycling those resources, based on economic, social and environmental cost-benefit ratios.* [Clarification Statement: Examples include developing best practices for agricultural soil use, mining (for metals, coal, tar sands, and oil shales), and pumping (for petroleum and natural gas).]

HS-ESS3-3. Illustrate relationships among management of natural resources, the sustainability of human populations, and biodiversity. [Clarification Statement: Examples of factors related to the management of natural resources include costs of resource extraction and waste management, per-capita consumption, and the development of new technologies. Examples of factors related to human sustainability include agricultural efficiency, levels of conservation, and urban planning. Examples of factors related to biodiversity include habitat use and fragmentation, and land and resource conservation.]

HS-ESS3-5. Analyze results from global climate models to describe how forecasts are made of the current rate of global or regional climate change and associated future impacts to Earth systems. [Clarification Statement: Climate model outputs include both climate changes (such as precipitation and temperature) and associated impacts (such as on sea level, glacial ice volumes, or atmosphere and ocean composition).] [Assessment Boundary: Assessment is limited to one example of a climate change and its associated impacts.]

[Note: HS-ESS3-4 and HS-ESS3-6 from NGSS is not included.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Constructing Explanations and Designing Solutions
- Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (HS-ESS3-1)

Engaging in Argument from Evidence
- Evaluate competing design solutions to a real-world problem based on scientific ideas and principles, empirical evidence, and logical arguments regarding relevant factors (e.g. economic, societal, environmental, ethical considerations). (HS-ESS3-2)

Disciplinary Core Ideas

ESS3.A: Natural Resources
- Resource availability has guided the development of human society. (HS-ESS3-1)
- All forms of energy production and other resource extraction have associated economic, social, environmental, and geopolitical costs and risks as well as benefits. (HS-ESS3-2)

ESS3.C: Human Impacts on Earth Systems
- The sustainability of human societies and the biodiversity that supports them requires responsible management of natural resources. (HS-ESS3-3)

ETS1.B: Developing Possible Solutions
- When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (Secondary to HS-ESS3-2)
Disciplinary Core Ideas

LS1.A: Structure and Function
- Systems of specialized cells within organisms help them perform the essential functions of life. (HS-LS1-2)
- All cells contain genetic information in the form of DNA molecules. Genes are regions in the DNA that contain the instructions that code for the formation of proteins, which carry out most of the work of cells. (HS-LS1-1)
- Multicellular organisms have a hierarchical structural organization, in which any one system is made up of numerous parts and is itself a component of the next level. (HS-LS1-2)
- Feedback mechanisms maintain a living system’s internal conditions within certain limits and mediate behaviors, allowing it to remain alive and functional even as external conditions change within some range. Feedback mechanisms can encourage (through positive feedback) or discourage (negative feedback) what is going on inside the living system. (HS-LS1-3)

LS1.B: Growth and Development of Organisms
- In multicellular organisms individual cells grow and then divide via a process called mitosis, thereby allowing the organism to grow. The organism begins as a single cell (fertilized egg) that divides successively to produce many cells, with each parent cell passing identical genetic material (two variants of each chromosome pair) to both daughter cells. Cellular division and differentiation produce and maintain a complex organism, composed of systems of tissues and organs that work together to meet the needs of the whole organism. (HS-LS1-4)

LS1.C: Organization for Matter and Energy Flow in Organisms
- The process of photosynthesis converts light energy to stored chemical energy by converting carbon dioxide plus water into sugars plus released oxygen. (HS-LS1-5)

Science and Engineering Practices

Developing and Using Models
- Develop and use a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-LS1-1), (HS-LS1-2)
- Use a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-LS1-4), (HS-LS1-5), (HS-LS1-7)

Engaging in Argument from Evidence
- Make and defend a claim based on evidence about the natural world or the effectiveness of a design solution that reflects scientific knowledge, and student-generated evidence. (HS-LS1-3)

Constructing Explanations and Designing Solutions
- Construct and revise an explanation based on valid and reliable evidence obtained from a source.
Biology HS-LS2. Ecosystems: Interactions, Energy, and Dynamics

HS-LS2-1. Analyze data sets to support explanations that biotic and abiotic factors affect ecosystem carrying capacity. [Clarification Statement: Examples of biotic factors could include relationships among individuals (e.g., feeding relationships, symbioses, competition) and disease. Examples of abiotic factors could include climate and weather conditions, natural disasters, and availability of resources. Example data sets can be derived from simulations or historical data.]

HS-LS2-2. Use mathematical representations to support explanations that biotic and abiotic factors affect biodiversity, including genetic diversity within a population and species diversity within an ecosystem. [Clarification Statement: Examples of biotic factors could include relationships among individuals (e.g., feeding relationships, symbioses, competition) and disease. Examples of abiotic factors could include climate and weather conditions, natural disasters, and availability of resources. Examples of mathematical representations include finding the average, determining trends, and using graphical comparisons of multiple sets of data.] [Assessment Boundary: Assessment is limited to provided data.]

HS-LS2-3. Construct and revise an explanation based on evidence that the processes of photosynthesis, chemosynthesis, and aerobic and anaerobic respiration are responsible for the cycling of matter and flow of energy through ecosystems. Explain that environmental conditions restrict which reactions can occur. [Clarification Statement: Examples of environmental conditions can include the availability of sunlight or oxygen.] [Assessment Boundary: Assessment does not include the specific chemical processes of photosynthesis, chemosynthesis, or either aerobic respiration or anaerobic respiration.]

HS-LS2-4. Use a mathematical model to describe the transfer of energy from one trophic level to another. Explain how the inefficiency of energy transfer between trophic levels affects the relative number of organisms that can be supported at each trophic level and necessitates a constant input of energy from sunlight or inorganic compounds from the environment. Explain that atoms, including elements of carbon, oxygen, hydrogen and nitrogen, are conserved even as matter is broken down, recombined, and recycled by organisms in ecosystems. [Clarification Statement: The model should illustrate the “10% rule” of energy transfer and show approximate amounts of available energy at each trophic level in an ecosystem (up to five trophic levels).]

HS-LS2-5. Use a model that illustrates the roles of photosynthesis, cellular respiration, decomposition, and combustion to explain the cycling of carbon in its various forms among the biosphere, atmosphere, hydrosphere, and geosphere. [Clarification Statement: The primary forms of carbon include carbon dioxide, hydrocarbons, waste, and biomass. Examples of models could include simulations and mathematical models.] [Assessment Boundary: Assessment does not include the specific chemical steps of photosynthesis, respiration, decomposition, and combustion.]

HS-LS2-6. Evaluate the claims, evidence, and reasoning that in stable conditions the dynamic interactions within an ecosystem tend to maintain relatively consistent numbers and types of organisms even when small changes in conditions occur but that extreme fluctuations in conditions may result in a new ecosystem. Analyze data to provide evidence that ecosystems with greater biodiversity tend to have greater resistance and resilience to change. [Clarification Statement: Examples of changes in ecosystem conditions could include modest biological or physical changes, such as moderate hunting or a seasonal flood; and, extreme changes, such as volcanic eruption, fires, climate changes, ocean acidification, or sea level rise.]

HS-LS2-7. Analyze direct and indirect effects of human activities on biodiversity and ecosystem health, specifically habitat fragmentation, introduction of non-native or invasive species, overharvesting, pollution, and climate change. Evaluate and refine a solution for reducing the impacts of human activities on biodiversity and ecosystem health. [Clarification Statement: Examples of solutions can include captive breeding programs, habitat restoration, pollution mitigation, energy conservation, and ecotourism.]

[Note: HS-LS2-8 from NGS is not included.]

Science and Engineering Practices

Disciplinary Core Ideas

LS2.A: Interdependent Relationships in Ecosystems

- Ecosystems have carrying capacities, which are limits to the numbers of organisms and populations they can support. These limits result from such factors as the availability of living and nonliving resources and from such challenges such as predation, competition, and disease. Organisms would have the capacity to produce populations of great size were it not for the fundamental tension affecting the abundance (number of individuals) of species in any given ecosystem. (HS-LS2-1), (HS-LS2-2)

LS2.B: Cycles of Matter and Energy Transfer in Ecosystems

- Photosynthesis and cellular respiration (including anaerobic processes) provide most of the energy for life processes. (HS-LS2-3)
- Plants or algae form the lowest level of the food web. At each link upward in a food web, only a small fraction of the matter consumed at the lower level is transferred upward, to produce growth and release energy in cellular respiration at the higher level. Given this inefficiency, there are generally fewer organisms at higher levels of a food web. Some matter reacts to release energy for life functions, some matter is stored in newly made structures, and much is discarded. The chemical elements that make up the molecules of organisms pass through food webs and into and out of the atmosphere and soil, and they are combined and recombined in different ways. At each link in an ecosystem, matter and energy are conserved. (HS-LS2-4)
- Photosynthesis and cellular respiration are important components of the carbon cycle, in which carbon is exchanged among the biosphere, atmosphere, oceans, and geosphere through chemical, physical, geological, and biological processes. (HS-LS2-5)

LS2.C: Ecosystem Dynamics, Functioning, and Resilience

- A complex set of interactions within an ecosystem can keep its numbers and types of organisms relatively constant over long periods of time under stable conditions. If a modest biological or physical disturbance to an ecosystem occurs, it may...
contextual real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. (HS-LS2-7)

Engaging in Argument from Evidence
- Evaluate the claims, evidence, and reasoning behind currently accepted explanations or solutions to determine the merits of arguments. (HS-LS2-6)

return to its more or less original status (i.e., the ecosystem is resilient), as opposed to becoming a very different ecosystem. Extreme fluctuations in conditions or the size of any population, however, can challenge the functioning of ecosystems in terms of resources and habitat availability. (HS-LS2-6)

Moreover, anthropogenic changes (induced by human activity) in the environment—including habitat destruction, pollution, introduction of invasive species, overexploitation, and climate change—can disrupt an ecosystem and threaten the survival of some species. (HS-LS2-7)

LS4.D: Biodiversity and Humans
- Humans depend on the living world for the resources and other benefits provided by biodiversity. But human activity is also having adverse impacts on biodiversity through overpopulation, overexploitation, habitat destruction, pollution, introduction of invasive species, and climate change. Thus sustaining biodiversity so that ecosystem functioning and productivity are maintained is essential to supporting and enhancing life on Earth. Sustaining biodiversity also aids humanity by preserving landscapes of recreational or inspirational value. (secondary to HS-LS2-7) (Note: This Disciplinary Core Idea is also addressed by HS-LS4-6.)

PS3.D: Energy in Chemical Processes
- The main way that solar energy is captured and stored on Earth is through the complex chemical process known as photosynthesis. (secondary to HS-LS2-5)

Common Core State Standards Connections:

ELA/Literacy –

RST.11-12.1 Cite specific text evidence to support analysis of science and technical text, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-LS2-1),(HS-LS2-2),(HS-LS2-3),(HS-LS2-6)

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-LS2-6),(HS-LS2-7)

RST.9-10.8 Assess the extent to which the reasoning and evidence in a text support the author’s claim or a recommendation for solving a scientific or technical problem. (HS-LS2-6),(HS-LS2-7)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-LS2-6),(HS-LS2-7)

WHST.9-12.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. (HS-LS2-1),(HS-LS2-2),(HS-LS2-3)

WHST.9-12.5 Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific audience and purpose. (HS-LS2-3)

WHST.9-12.7 Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-LS2-7)

Mathematics –

HSS-N.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-LS2-1),(HS-LS2-2),(HS-LS2-4),(HS-LS2-7)

HSS-N.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-LS2-1),(HS-LS2-2),(HS-LS2-7)

HSS-N.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-LS2-1),(HS-LS2-2),(HS-LS2-3)

HSS-N.B.1 Represent data with plots on the real number line. (HS-LS2-6)

HSS-N.C.1 Understand statistics as a process for making inferences about population parameters based on a random sample from that population. (HS-LS2-6)

HSS-N.C.6 Evaluate reports based on data. (HS-LS2-6)

Biology HS-LS3 Heredity: Inheritance and Variation of Traits

HS-LS3.1. Ask questions to clarify relationships about how DNA in the form of chromosomes is passed from parents to offspring through the processes of meiosis and fertilization in sexual reproduction. [Assessment Boundary: Assessment does not include role memorization of the phases of meiosis or the biochemical mechanism of specific steps in the process.]

HS-LS3.2. Make and defend a claim based on evidence that inheritable genetic variations may result from: a. new genetic combinations through meiosis; b. mutations that occur during replication; and/ or c. mutations caused by environmental factors. Recognize that in general, only mutations that occur in gametes can be passed to offspring. [Clarification Statement: New genetic combinations through meiosis occur via the processes of crossing over and random segregation of chromosomes.] (Assessment Boundary: Assessment does not include role memorization of the phases of meiosis nor identification of specific types of mutations.)

HS-LS3.3. Explain that: a. genes have variations (alleles) that code for specific variants of a protein (or RNA), and therefore specific traits of an individual; b. an individual’s characteristics (phenotype) result, in part, from complex relationships among the various proteins (and RNAs) expressed by one or more genes; and c. the environment can affect the variation and distribution of expressed traits in a population. [Clarification Statement: An example of the role of the environment in expressed traits in an individual can include the likelihood of developing inherited diseases (i.e. heart disease, cancer) in relation to exposure to environmental toxins and lifestyle; an example in populations can include the maintenance of the allele for sickle-cell anemia in high frequency in malaria-effected regions of the globe, such as Africa, because it confers partial resistance to malaria.] (Assessment Boundary: Assessment does not include Hardy-Weinberg calculations.)

The performance expectations above were developed using the following elements from the NRC document, A Framework for K-12 Science Education:

Science and Engineering Practices

Asking Questions and Defining Problems
- Ask questions that arise from examining models or a theory to clarify relationships. (HS-LS3-1)

Engaging in Argument from Evidence
- Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence. (HS-LS3-2)

Constructing Explanations and Designing Solutions
- Apply scientific ideas, principles, and/or evidence to provide an explanation of phenomena and solve design problems, taking into account possible unanticipated effects. (HS-LS3-3)

Disciplinary Core Ideas

LS3.A: Inheritance of Traits
- Each chromosome consists of a single very long DNA molecule, and each gene on the chromosome is a particular segment of that DNA. The instructions for forming species’ characteristics are carried in DNA. All cells in an organism have the same genetic content, but the genes used (expressed) by the cell may be regulated in different ways. Not all DNA codes for a protein; some segments of DNA code for RNAs, are involved in regulatory or structural functions, and some have no as-yet known function. (HS-LS3-1),(HS-LS3-3)

LS3.B: Variation of Traits
- In sexual reproduction, chromosomes can sometimes swap sections during the process of meiosis (cell division), thereby creating new genetic combinations and thus more genetic variation. Although DNA replication is tightly regulated and remarkably accurate, errors do occur and result in mutations, which are also a source of genetic variation. Environmental factors can also cause mutations in genes, and viable mutations are inherited. (HS-LS3-2)

- Environmental factors also affect expression of traits, and hence affect the probability of occurrences of traits in a population. Thus the variation and distribution of traits observed depends on both genetic and environmental factors. (HS-LS3-2),(HS-LS3-3)
Biology HS-LS4 Biological Evolution: Unity and Diversity

HS-LS4-1. Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence, including molecular, anatomical and developmental similarities inherited from a common ancestor (homologies), seen through fossils and documented laboratory and field observations.

HS-LS4-2. Construct an explanation based on evidence that the process of evolution by natural selection occurs in a population when the following conditions are met: (1) more offspring are produced than can be supported by the environment, (2) there is heritable variation among individuals, and (3) some of these variations lead to differential fitness among individuals as some individuals are better able to compete for limited resources than others. The result is the proliferation of those individuals with advantageous heritable traits that are better able to survive and reproduce in the environment.

HS-LS4-3. Explain based on evidence how coevolution and sexual selection can lead to individuals with behavioral, anatomical, and physiological adaptations in a population.

HS-LS4-4. Construct an explanation based on evidence for how genetic drift and gene flow together with natural selection lead to populations that have more individuals with behavioral, anatomical, and physiological adaptations.

HS-LS4-5. Evaluate evidence that demonstrates how changes in environmental conditions may result in the emergence of new species over generations and/or the extinction of other species, and that these processes may occur at different rates depending on the conditions.

[Clarification Statement: Examples of the processes occurring at different rates include gradualism versus punctuated equilibrium and background extinction versus mass extinction.]

Science and Engineering Practices

Constructing Explanations and Designing Solutions

- Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (HS-LS4-2), (HS-LS4-3), (HS-LS4-4)

Engaging in Argument from Evidence

- Evaluate the evidence behind currently accepted explanations or solutions to determine the merits of arguments. (HS-LS4-5)

Obtaining, Evaluating, and Communicating Information

- Communicate scientific information (e.g., about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically). (HS-LS4-1)

Disciplinary Core Ideas

LS4.A: Evidence of Common Ancestry and Diversity

- Genetic information provides evidence of evolution. DNA sequences vary among species, but there are many overlaps; in fact, the ongoing branching that produces multiple lines of descent can be inferred by comparing the DNA sequences of different organisms. Such information is also derivable from the similarities and differences in amino acid sequences and from anatomical and embryological evidence. (HS-LS4-1)

LS4.B: Natural Selection

- Natural selection occurs only if there is both (1) variation in the genetic information between organisms in a population and (2) variation in the expression of that genetic information—that is, trait variation—that leads to differences in performance among individuals. (HS-LS4-2), (HS-LS4-3)
- The traits that positively affect survival are more likely to be reproduced, and thus are more common in the population. (HS-LS4-2), (HS-LS4-3)

LS4.C: Adaptation

- Evolution is a consequence of the interaction of four factors: (1) the potential for a species to increase in number, (2) the genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for an environment’s limited supply of the resources that individuals need in order to survive and reproduce, and (4) the ensuing proliferation of those organisms that are better able to survive and reproduce in that environment. (HS-LS4-2)
- Natural selection leads to adaptation, that is, to a population dominated by organisms that are anatomically, behaviorally, and physiologically well suited to survive and reproduce in a specific environment. That is, the differential survival and reproduction of organisms in a population that have an advantageous heritable trait leads to an increase in the proportion of individuals in future generations that have the trait and to a decrease in the proportion of individuals that do not. (HS-LS4-2), (HS-LS4-3), (HS-LS4-4)
- Adaptation also means that the distribution of traits in a population can change when conditions change. (HS-LS4-5)
- Changes in the physical environment, whether naturally occurring or human induced, have thus contributed to the expansion of some species, the emergence of new distinct species as populations diverge under different conditions, and the decline—and sometimes the extinction—of some species. (HS-LS4-5)
- Species become extinct because they can no longer survive and reproduce in their altered environment. If members cannot adjust to change that is too fast or drastic, the opportunity for the species’ evolution is lost. (HS-LS4-5)

Common Core State Standards Connections:

- **ELA/Literacy**
 - **WHST.9-12.1** Write arguments focused on discipline-specific content. (HS-LS3-2)
 - **WHST.9-12.2** Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. (HS-LS4-1), (HS-LS4-2), (HS-LS4-3), (HS-LS4-4)
 - **WHST.9-12.5** Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience. (HS-LS4-5)
 - **WHST.9-12.7** Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-LS4-6)
 - **WHST.9-12.9** Draw evidence from informational texts to support analysis, reflection, and research. (HS-LS4-1), (HS-LS4-2), (HS-LS4-3), (HS-LS4-4), (HS-LS4-5)
- **RST.11-12.1** Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-LS4-1), (HS-LS4-2), (HS-LS4-3), (HS-LS4-4)
- **RST.11-12.8** Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-LS4-5)
- **WHST.9-12.2** Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. (HS-LS4-1), (HS-LS4-2), (HS-LS4-3), (HS-LS4-4)
- **WHST.9-12.5** Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience. (HS-LS4-5)
- **WHST.9-12.7** Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-LS4-6)
- **WHST.9-12.9** Draw evidence from informational texts to support analysis, reflection, and research. (HS-LS4-1), (HS-LS4-2), (HS-LS4-3), (HS-LS4-4), (HS-LS4-5)
- **SL.11-12.4** Present claims and findings, emphasizing salient points in a focused, coherent manner with relevant evidence, sound valid reasoning, and well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation. (HS-LS4-1), (HS-LS4-2)

Massachusetts Draft Revised Science and Technology/Engineering Standards, December 2013

Available at www.doe.mass.edu/STEM/review.html; Submit input to mathscitenceech@doe.mass.edu
HS-PS1-1. Use the periodic table as a model to predict the relative properties of main group elements, including ionization energy and relative sizes of atoms and ions, based on the patterns of electrons in the outermost energy level of each element. Use the patterns of valence electron configurations and Coulomb's law to explain and predict trends in ionization energies, relative sizes of atoms and ions, and reactivity of pure elements. [Assessment Boundary: Assessment is limited to main group (s and p block) elements.]

HS-PS1-2. Use the periodic table model to predict and design simple combination reactions that result in two main classes of binary compounds, ionic and molecular. Account for chemical changes in terms of charge redistribution. [Clarification Statement: Simple combination reactions include combination, decomposition, single displacement, double displacement, or combustion.]

HS-PS1-3. Use evidence to relate physical properties of substances at the bulk scale to spatial arrangements, movement, and strength of electrostatic forces among ions, small molecules, or regions of large molecules in the substances. Make arguments to account for how intermolecular interactions are determined by atomic composition and molecular geometry, and for how ions or small molecules arrange into two major types of three-dimensional crystals: atomic and molecular crystals. [Clarification Statement: Substances include both pure substances in solid, liquid, gas and networked forms (such as graphite) as well as solutions. Examples of bulk properties of substances include composition, melting point and boiling point, vapor pressure, and surface tension.] [Assessment Boundary: Assessment does not include Raoult's law calculations of vapor pressure. Properties of heterogeneous mixtures are not assessed. Names of specific intermolecular forces (such as dipole-dipole) are not assessed.]

HS-PS1-4. Develop a model to illustrate the energy transferred during an exothermic or endothermic chemical reaction based on the bond energy difference between bonds broken (absorption of energy) and bonds formed (release of energy). [Clarification Statement: Examples of models may include molecular-level drawings and diagrams of reactions, graphs showing the relative energies of reactants and products, and representations showing energy is conserved.]

HS-PS1-5. Construct an explanation based on collision theory for why varying conditions influence the rate of a chemical reaction or a dissolving process. Design and test ways to alter various conditions to influence (slow down or accelerate) rates of processes (chemical reactions or dissolving) as they occur.* [Clarification Statement: Explanations should be based on three variables in collision theory: quantity of collisions per unit time; molecular orientation on collision, and energy input needed to induce atomic rearrangements. Conditions that affect these three variables include temperature, pressure, concentrations of reactants, mixing, particle size, surface area, and addition of a catalyst.] [Assessment Boundary: Assessment does not include calculating equilibrium constants or concentrations. Assessment is limited to simple reactions in which there are only two reactants and to specifying the change in only one variable at a time.]

HS-PS1-6. Design ways to control the extent of a reaction at equilibrium (relative amount of products to reactants) by altering various conditions using Le Chatelier’s principle. Make arguments based on collision theory to account for how altering conditions would affect the forward and reverse rates of the reaction until a new equilibrium is established.* [Clarification Statement: Conditions that can be altered include temperature, pressure, concentrations of reactants, mixing, particle size, surface area, and addition of a catalyst.] [Assessment Boundary: Assessment does not include calculating equilibrium constants or concentrations. Assessment is limited to simple reactions in which there are only two reactants and to specifying the change in only one variable at a time.]

HS-PS1-7. Use mathematical representations and provide experimental evidence to support the claim that atoms, and therefore mass, are conserved during a chemical reaction. Use the mole concept and proportional relationships to predict the quantities (masses or mole) of specific reactants or products. [Clarification Statement: Mathematical representations include balanced chemical equations that represent the laws of conservation of mass and constant composition (definite proportions), percent composition, empirical formulas, mass-to-mass stoichiometry, and calculations of percent yield.] [Assessment Boundary: Calculations may involve mass-to-mass stoichiometry and atom economy comparisons, but only for single-step reactions that do not involve complexes.]

HS-PS1-9(MA). Recognize that the strength of an aqueous acidic or basic solution is determined by the hydronium ion concentration. Use the Arrhenius and Bronsted-Lowry acid-base reaction models and Le Chatelier’s principle to predict whether the pH increases or decreases when conditions are modified. Make arguments about the relative strengths of two acids or bases with similar structure and/ or composition. [Clarification Statement: Modification of conditions includes dilution of or addition or removal of reactants or products by physical or chemical means. Comparisons of relative strengths of aqueous acid or base solutions made from similar acid or base substances is limited to arguments based on periodic properties of elements, electronegativity model of electron distribution, empirical dipole moments, and molecular geometry.] [Assessment Boundary: Reactions are limited to Arrhenius and Bronsted-Lowry acid-base reaction patterns with monoprotic acids. Acid or base strength comparisons are limited to homologous series.]

HS-PS1-10(MA). Use an oxidation-reduction reaction model to predict products of reactions given the reactants, and to communicate the reaction models using a representation that shows electron transfer (redox). Use periodic properties of elements, an electron distribution model and the periodic table model to design substances that could be used in devices that produce electricity via oxidation-reduction reactions.* [Clarification Statement: Devices may include batteries, fuel cells, electrolysis, and corrosion-protection.][Assessment Boundary: Reactions are limited to simple oxidation-reduction reactions that do not require hydronium or hydroxide ion to balance half-reactions. Electronic distribution models are limited to oxidation numbers accounting.]

HS-PS1-11(MA). Construct an argument to show differences in the atomic composition and molecular geometry of substances that allow for identification, detection, and separation of substances in a mixture. [Clarification Statement: Atomic composition of the atom includes electrostatic attractions and repulsions between the electrons and nucleus and that neutral atoms can have different numbers of neutrons (isotopes).]

HS-PS1-12(MA). Combine period patterns and Coulomb’s law with observational data about ionic substances versus molecular substances to develop a predictive model for ionic versus covalent bonding in binary structures. [Clarification Statement: Observational data include: ionic substances (i.e., have ionic bonds), when pure, are crystalline salts at room temperature (common examples include NaCl, Na2CO3, Fe2O3); and substances that are liquids and gasses at room temperature are usually made of molecules which have covalent (common combination examples include C6H12, N2, CH4, CO2, C8H18, C12H22O11).]

MS-PS1-13(MA). Analyze data of the conductivity of pure water versus different solutions of water with another substance dissolved in it to make a claim about the nature of the molecules of the dissolved substances.

[Note: HS-PS1-8 is found in Earth and Space Science.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.

Available at [www.doe.mass.edu/STEM/review.html]; Submit input to mathsciteneech@doe.mass.edu
The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Chemistry HS-PS2 Motion and Stability: Forces and Interactions

HS-PS2-6. Communicate scientific and technical information about the molecular-level structures of different materials to justify why particular classes of substances have specific properties that are useful in the functioning of designed materials.* [Clarification Statement: Examples could include comparing molecules with simple molecular geometries, why electrically conductive materials are often made of metal, foods and household products often contain ionic compounds, materials that need to be flexible but durable are made up of polymers, and pharmaceuticals are designed to interact with specific receptors.] [Assessment Boundary: Assessment is limited to VESPR, polymers, ionic compounds, isomers, and metals.]

HS-PS2-7(MA). Construct a model to explain the process by which solutes dissolve in solvents, particularly water, and predict how intermolecular forces affect solubility. [Clarification Statement: Predictions include whether the substance will dissolve based on being polar or nonpolar and ionic or covalent.]

HS-PS2-8(MA). Communicate a qualitative explanation based on kinetic-molecular theory for why one variable in the combined gas law changes when another is varied. Using kinetic-molecular theory, explain the behavior of gases and the relationship between pressure and volume (Boyle’s law), volume and temperature (Charles’s law), and pressure and temperature (Gay-Lussac’s law). Use the combined gas law to determine changes in pressure, volume, and temperature.

[Note: HS-PS2-1, HS-PS2-2, HS-PS2-3, HS-PS2-4, HS-PS2-5, HS-PS2-9(MA) and HS-PS2-10(MA) are found in Introductory Physics.]
HS-PS3 Energy

HS-PS3-4b. Provide evidence from literature or available data to illustrate that the transfer of energy within a closed system involves heat (enthalpy change) and rearrangement of the system (entropy change) while the overall energy in the system is conserved.

[Note: HS-PS3-1, HS-PS3-2, HS-PS3-3, HS-PS3-4a, and HS-PS3-5 are found in Introductory Physics.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Construct, use, and/or present an oral and written argument or counter-arguments based on data and evidence. (HS-PS1-4b)</td>
<td>• Stable forms of matter are those in which the electric and magnetic field energy is minimized. A stable molecule has less energy than the same set of atoms separated; one must provide at least this energy in order to take the molecule apart. (HS-PS1-4b)</td>
</tr>
<tr>
<td></td>
<td>PS1.B: Chemical Reactions</td>
</tr>
<tr>
<td></td>
<td>• Chemical processes, their rates, and whether or not energy is stored or released can be understood in terms of the collisions of molecules and the rearrangements of atoms into new molecules, with consequent changes in the sum of all bond energies in the set of molecules that are matched by changes in kinetic energy. (HS-PS1-4b)</td>
</tr>
<tr>
<td></td>
<td>PS3.B: Conservation of Energy and Energy Transfer</td>
</tr>
<tr>
<td></td>
<td>• Energy cannot be created or destroyed, but it can be transported from one place to another and transferred between systems. (HS-PS3-4b)</td>
</tr>
<tr>
<td></td>
<td>• Uncontrolled systems always evolve toward more stable states—that is, toward more uniform energy distribution (e.g., water flows downhill, objects hotter than their surrounding environment cool down). (HS-PS3-4b)</td>
</tr>
</tbody>
</table>
Introductory Physics (Grade 9 or 10)

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzing and Interpreting Data</td>
<td>PS2.A: Forces and Motion</td>
</tr>
<tr>
<td>• Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. (HS-PS2-1)</td>
<td>• Newton's second law accurately predicts changes in the motion of macroscopic objects. (HS-PS2-1)</td>
</tr>
<tr>
<td>Using Mathematics and Computational Thinking</td>
<td>PS2.B: Types of Interactions</td>
</tr>
<tr>
<td>• Use mathematical representations of phenomena to describe explanations. (HS-PS2-2),(HS-PS2-4)</td>
<td>• Newton's law of universal gravitation and Coulomb's law provide the mathematical models to describe and predict the effects of gravitational and electrostatic forces between distant objects. (HS-PS2-4)</td>
</tr>
<tr>
<td>• Apply techniques of algebra and functions to represent and solve scientific and engineering problems. (HS-PS2-10)</td>
<td>• Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields. (HS-PS2-4),(HS-PS2-5)</td>
</tr>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
<td>HS-PS2-1</td>
</tr>
<tr>
<td>• Apply scientific ideas to solve a design problem, taking into account possible unanticipated effects. (HS-PS2-3)</td>
<td>Newton's second law of motion is a mathematical model describing motion and change in motion (acceleration) of objects with mass when acted on by a net force. Use free-body force diagrams and algebraic expressions representing Newton's laws of motion to predict changes to velocity and acceleration for an object moving in one dimension in various situations. (Clarification Statement: Examples of data could include tables or graphs of position or velocity as a function of time for objects subject to a net unbalanced force, such as a falling object, an object rolling down a ramp, or a moving object being pulled by a constant force. Predictions of changes in motion can be made numerically, graphically, and algebraically using basic equations for velocity, average speed and constant acceleration.)</td>
</tr>
<tr>
<td>Engaging in Argument from Evidence</td>
<td>HS-PS2-2</td>
</tr>
<tr>
<td>• Construct, use, and/or present an oral and written argument or counter-arguments based on data and evidence. (HS-PS2-5)</td>
<td>Use mathematical representations to show that the total momentum of a system of interacting objects moving in one dimension is conserved when there is no net force on the system. (Clarification Statement: Emphasis is on the qualitative meaning of the conservation of momentum and the quantitative understanding of the conservation of linear momentum in interactions involving elastic and inelastic collisions between two objects in one dimension.)</td>
</tr>
<tr>
<td>Planning and Carrying Out Investigations</td>
<td>HS-PS2-3</td>
</tr>
<tr>
<td>• Select appropriate tools to collect, record, analyze, and evaluate data. (HS-PS2-10)</td>
<td>Apply scientific principles of motion and momentum to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision. (Clarification Statement: Both qualitative evaluations and algebraic manipulations may be used.)</td>
</tr>
</tbody>
</table>

Common Core State Standards Connections:

Mathematics -

- **HSG-Q.A.1** Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)
- **HSG-Q.A.2** Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)
- **HSA-SE.A.1** Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1),(HS-PS2-4)
- **HSA-SE.B.3** Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-1),(HS-PS2-4)
- **HSA-CED.A.1** Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-1)
- **HSA-CED.A.2** Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2-1)
- **HSA-CED.A.4** Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS2-1)
- **HSS-F.IF.C.7** Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (HS-PS2-1)
- **HSS-ID.A.1** Represent data with plots on the real number line (dot plots, histograms, and box plots). (HS-PS2-1)
HS-PS3-1. Use algebraic expressions and the principle of energy conservation to calculate the change in energy of one component of a system when the change in energy of the other component(s) of the system, as well as the total energy of the system including any energy entering or leaving the system, is known. Identify any transformations from one form of energy to another, including thermal, kinetic, gravitational, magnetic, or electrical energy, in the system. [Assessment Boundary: Assessment is limited to systems of two or three components, and to thermal energy, kinetic energy, and/or the energies in gravitational, magnetic, or electric fields.]

HS-PS3-2. Develop and use a model to illustrate that energy at the macroscopic scale can be accounted for as either motions of particles and objects or energy stored in fields. [Clarification Statement: Examples of phenomena at the macroscopic scale could include the conversion of kinetic energy to thermal energy, the gravitational potential energy stored due to position of an object above the earth, and the energy stored (electrical potential) of a charged object’s position within an electrical field. Examples of models could include diagrams, drawings, descriptions, and computer simulations.]

HS-PS3-3. Design and evaluate a device that works within given constraints to convert one form of energy into another form of energy.* [Clarification Statement: Emphasis is on both qualitative and quantitative evaluations of devices. Examples of devices could include Rube Goldberg devices, wind turbines, solar cells, solar ovens, and generators. Examples of constraints could include use of renewable energy forms and efficiency.]

HS-PS3-4a. Provide evidence that when two objects of different temperature are in thermal contact within a closed system, the transfer of thermal energy results in thermal equilibrium, or a more uniform energy distribution among the objects (second law of thermodynamics) and that temperature changes at thermal equilibrium depend on the specific heat values of the two substances. [Clarification Statement: Energy changes should be described both quantitatively in a single phase ($Q = mc\Delta T$) and conceptually in either a single phase or during a phase change.]

HS-PS3-5. Develop and use a model of electric or magnetic fields to illustrate the forces and changes in energy between two magnetically or electrically charged objects changing relative position in a field. [Clarification Statement: Examples of models could include drawings, diagrams, and texts, such as drawings of what happens when two charges of opposite polarity are near each other.]

[Note: HS-PS3-4b is found in Chemistry.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models
- Develop and use a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-PS3-2), (HS-PS3-5)

Using Mathematics and Computational Thinking
- Apply techniques of algebra and functions to represent and solve scientific and engineering problems. (HS-PS3-1)

Constructing Explanations and Designing Solutions
- Design, evaluate, and/or refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. (HS-PS3-3)

Disciplinary Core Ideas

PS3.A: Definitions of Energy
- Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that a system's total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms. (HS-PS3-1),(HS-PS3-2)
- At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy. (HS-PS3-2) (HS-PS3-3)
- These relationships are better understood at the microscopic scale, at which all of the different manifestations of energy can be modeled as either motions of particles or energy stored in fields (which mediate interactions between particles). (HS-PS3-2)

PS3.B: Conservation of Energy and Energy Transfer
- Conservation of energy means that the total change of energy in any system is always equal to the total energy transferred into or out of the system. (HS-PS3-1)
- Energy cannot be created or destroyed, but it can be transported from one place to another and transferred between systems. (HS-PS3-1),(HS-PS3-4)
- Mathematical expressions, which quantify how the stored energy in a system depends on its configuration (e.g. relative positions of charged particles, compression of a spring) and how kinetic energy depends on mass and speed, allow the concept of conservation of energy to be used to predict and describe system behavior. (HS-PS3-1)
- The availability of energy limits what can occur in any system. (HS-PS3-1)
- Uncontrolled systems always evolve toward more stable states—that is, toward more uniform energy distribution (e.g., water flows downhill, objects hotter than their surrounding environment cool down). (HS-PS3-4)

PS3.C: Relationship Between Energy and Forc es
- When two objects interacting through a field change relative position, the energy stored in the field is changed. (HS-PS3-5)

Introductory Physics HS-PS4 Waves and Their Applications in Technologies for Information Transfer

HS-PS4-1. Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media. Recognize that electromagnetic waves can travel through empty space (without a medium). [Clarification Statement: Examples of situations to consider could include electromagnetic radiation traveling in a vacuum and glass, sound waves traveling through air and water, and seismic waves traveling through the Earth. Relationships include $v = f$, $c = \lambda f$, and the qualitative comparison of the speed of a transverse (including electromagnetic) or longitudinal mechanical wave in a solid, liquid, or vacuum (if applicable).] [Assessment Boundary: Assessment is limited to algebraic relationships and not to include Snell’s Law.]

HS-PS4-3. Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for explaining reflection, refraction, resonance, interference, diffraction, and the photoelectric effect, one model is more useful than the other. [Clarification Statement: Includes both transverse (including electromagnetic) and longitudinal mechanical waves.]

HS-PS4-5. Communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy.* [Clarification Statement: Examples of technological devices could include solar cells capturing light and converting it to electricity, medical imaging, and communications technology. Examples of principles of wave behavior include resonance, photoelectric effect, and interference.] [Assessment Boundary: Assessments are limited to qualitative information. Assessments do not include band theory.]

[Note: HS-PS4-2 and HS-PS4-4 from NGSS are not included.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.
Science and Engineering Practices

Using Mathematics and Computational Thinking
- Use mathematical representations of phenomena or design solutions to describe and/or support claims and/or explanations. (HS-PS4-1)

Engaging in Argument from Evidence
- Evaluate the claims, evidence, and reasoning behind currently accepted explanations or solutions to determine the merits of arguments. (HS-PS4-3)

Obtaining, Evaluating, and Communicating Information
- Communicate technical information or ideas (e.g., about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically). (HS-PS4-5)

Disciplinary Core Ideas

PS3.D: Energy in Chemical Processes
- Solar cells are human-made devices that likewise capture the sun's energy and produce electrical energy. (secondary to HS-PS4-5)

PS4.A: Wave Properties
- The wavelength and frequency of a wave are related to one another by the speed of travel of the wave, which depends on the type of wave and the medium through which it is passing. (HS-PS4-1)
- Information can be digitized (e.g., a picture stored as the values of an array of pixels); in this form, it can be stored reliably in computer memory and sent over long distances as a series of wave pulses. (HS-PS4-2),(HS-PS4-5)
- From the 3–5 grade band endpoints] Waves can add or cancel one another as they cross, depending on their relative phase (i.e., relative position of peaks and troughs of the waves), but they emerge unaffected by each other. (Boundary: The discussion at this grade level is qualitative only; it can be based on the fact that two different sounds can pass a location in different directions without getting mixed up.) (HS-PS4-3)

PS4.B: Electromagnetic Radiation
- Electromagnetic radiation (e.g., radio, microwaves, light) can be modeled as a wave of changing electric and magnetic fields or as particles called photons. The wave model is useful for explaining many features of electromagnetic radiation, and the particle model explains other features. (HS-PS4-3)
- Photovoltaic materials emit electrons when they absorb light of a high-enough frequency. (HS-PS4-5)

PS4.C: Information Technologies and Instrumentation
- Multiple technologies based on the understanding of waves and their interactions with matter are part of everyday experiences in the modern world (e.g., medical imaging, communications, scanners) and in scientific research. They are essential tools for producing, transmitting, and capturing signals and for storing and interpreting the information contained in them. (HS-PS4-5)

Common Core State Standards Connections:

ELA/Literacy –
- RST.11-12.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-PS4-3)
- RST.9-10.8 Assess the extent to which the reasoning and evidence in a text support the author’s claim or a recommendation for solving a scientific or technical problem. (HS-PS4-3)
- RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-PS4-3)

Mathematics –
- HSA-SSE.A.1 Interpret expressions that represent a quantity in terms of its context. (HS-PS4-1)
- HSA-SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS4-1)
<table>
<thead>
<tr>
<th>Technology/Engineering HS-ETS1 Engineering Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS-ETS1-1. Analyze a major global challenge to specify a design problem that can be improved. Determine necessary qualitative and quantitative criteria and constraints for solutions, including any requirements set by society.* [Clarification Statement: Examples of societal requirements can include risk mitigation, aesthetics, ethical considerations, and long-term maintenance costs.]</td>
</tr>
<tr>
<td>HS-ETS1-2. Break a complex real-world problem into smaller, more manageable problems that each can be solved using scientific and engineering principles.*</td>
</tr>
<tr>
<td>HS-ETS1-3. Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, aesthetics and maintenance, as well as social, cultural, and environmental impacts.*</td>
</tr>
<tr>
<td>HS-ETS1-4. Use a computer simulation to model the impact of a proposed solution to a complex real-world problem that has numerous criteria and constraints on the interactions within and between systems relevant to the problem.*</td>
</tr>
<tr>
<td>HS-ETS1-5(MA). Plan a prototype or design solution using orthogonal projections and isometric drawings, using proper scales and proportions.*</td>
</tr>
<tr>
<td>HS-ETS1-6(MA). Document and present solutions that include specifications, performance results, successes and remaining issues, and limitations.*</td>
</tr>
</tbody>
</table>

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*.

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asking Questions and Defining Problems</td>
</tr>
<tr>
<td>• Analyze complex real-world problems by specifying criteria and constraints for successful solutions. (HS-ETS1-1)</td>
</tr>
<tr>
<td>Using Mathematics and Computational Thinking</td>
</tr>
<tr>
<td>• Use mathematical models and/or computer simulations to predict the effects of a design solution on systems and/or the interactions between systems. (HS-ETS1-4)</td>
</tr>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
</tr>
<tr>
<td>• Design a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. (HS-ETS1-2), (HS-ETS1-5)</td>
</tr>
<tr>
<td>• Evaluate a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. (HS-ETS1-3)</td>
</tr>
<tr>
<td>Obtaining, Evaluating, and Communicating Information</td>
</tr>
<tr>
<td>• Communicate technical information or ideas in multiple formats (including orally, graphically, textually, and mathematically). (HS-ETS1-6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETS1.A: Defining and Delimiting Engineering Problems</td>
</tr>
<tr>
<td>• Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. (HS-ETS1-1)</td>
</tr>
<tr>
<td>• Humanity faces major global challenges today, such as the need for supplies of clean water and food or for energy sources that minimize pollution, which can be addressed through engineering. These global challenges also may have manifestations in local communities. (HS-ETS1-1)</td>
</tr>
<tr>
<td>ETS1.B: Developing Possible Solutions</td>
</tr>
<tr>
<td>• When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (HS-ETS1-3)</td>
</tr>
<tr>
<td>• Both physical models and computers can be used in various ways to aid in the engineering design process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. (HS-ETS1-4)</td>
</tr>
<tr>
<td>ETS1.C: Optimizing the Design Solution</td>
</tr>
<tr>
<td>• Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2)</td>
</tr>
</tbody>
</table>

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*.

<table>
<thead>
<tr>
<th>Technology/Engineering HS-ETS2 Materials, Tools and Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS-ETS2-1(MA). Determine the best application of manufacturing processes to create parts of desired shape, size, and finish based on available resources and safety. (Clarification Statement: Examples of processes can include forming (molding of plastics, casting of metals, shaping, rolling, forging, and stamping), machining (cutting and milling), conditioning (thermal, mechanical and chemical processes), and finishing.) [Assessment Boundary: Assessment does not include specific manufacturing machines.]</td>
</tr>
<tr>
<td>HS-ETS2-2(MA). Explain that computers and robots can be used at different stages of a manufacturing system, typically for jobs that are repetitive, very small, or very dangerous. [Clarification Statement: Examples of stages include design, testing, production, and quality control.]</td>
</tr>
<tr>
<td>HS-ETS2-3(MA). Compare the costs and benefits of custom versus mass production based on qualities of the desired product, the cost of each unit to produce, the number of units needed.</td>
</tr>
<tr>
<td>HS-ETS2-4(MA). Explain how manufacturing processes transform material properties to meet a specified purpose or function. Recognize that new materials can be synthesized through chemical and physical processes that are designated to manipulate material properties. Create and interpret graphs that relate material properties to a desired performance condition a designed object must meet. [Clarification Statement: Examples of material properties can include strength, durability, hardness, and elasticity. Examples of graphs can include graphs of extension vs. load-as for an elastic material, or stiffness vs. temperature-as for metals.]</td>
</tr>
</tbody>
</table>

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*.

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzing and Interpreting Data</td>
</tr>
<tr>
<td>• Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. (HS-ETS2-4)</td>
</tr>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
</tr>
</tbody>
</table>

Available at www.doe.mass.edu/STEM/review.html; Submit input to mathscitenceech@doe.mass.edu
Technology/Engineering HS-ETS3 Technological Systems

HS-ETS3-1(MA). Model a technological system in which the output of one subsystem becomes the input to other subsystems.

HS-ETS3-2(MA). Use a model to explain how information transmitted via digital and analog signals travels through the following media: electrical wire, optical fiber, air, and space. Analyze a communication problem and determine the best mode of delivery for the communication(s).

HS-ETS3-3(MA). Explain the importance of considering both live loads and dead loads when constructing structures. Calculate the resultant force(s) for a combination of live loads and dead loads for various situations. [Clarification Statement: Examples of structures can include buildings, decks, and bridges. Examples of loads and forces include live load, dead load, total load, tension, shear, compression, and torsion.]

HS-ETS3-4(MA). Use a model to illustrate how the forces of tension, compression, torsion, and shear affect the performance of a structure. Analyze situations that involve these forces and justify the selection of materials for the given situation based on their properties. [Clarification Statement: Examples of structures include bridges, houses, and skyscrapers. Examples of material properties can include elasticity, plasticity, thermal resistance, density, and strength.]

HS-ETS3-5(MA). Analyze how the design of a building is influenced by thermal conditions such as wind, solar angle, and temperature. Give examples of how conduction, convection, and radiation are considered in the selection of materials for buildings and in the design of a heating system.

HS-ETS3-6(MA). Describe how a vehicle or device can be modified to produce a change in lift, drag, friction, thrust, and weight. [Clarification Statement: Examples of vehicles can include cars, boats, airplanes, and rockets. Considerations of lift require consideration of Bernoulli’s principle.]

Disciplinary Core Ideas

Science and Engineering Practices

Developing and Using Models
- Develop a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-ETS3-1), (HS-ETS3-2)
- Develop a model (including mathematical and computational) to generate data to support explanations, analyze systems, and/or solve problems. (HS-ETS3-4)

Constructing Explanations and Designing Solutions
- Apply scientific reasoning to link evidence to the claims to assess the extent to which the reasoning and data support the explanation or conclusion. (HS-ETS3-3)

Obtaining, Evaluating, and Communicating Information
- Communicate technical information or ideas (e.g. about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically). (HS-ETS3-6)
Technology/Engineering HS-ETS4 Energy and Power Technologies

HS-ETS4-1(MA). Research and describe various ways that humans use energy and power systems to accomplish tasks effectively and efficiently. [Clarification Statement: Examples of energy and power systems can include fluid systems such as hydraulics and pneumatics, thermal systems such as heating and cooling, and electrical systems such as electronic devices and residential wiring.]

HS-ETS4-2(MA). Use a model to explain differences between open fluid systems and closed fluid systems. Determine when it is more or less appropriate to use one type of system instead of the other. [Clarification Statement: Examples of open systems can include irrigation, forced hot air system, and air compressors. Examples of closed systems can include forced hot water system and hydraulic brakes.]

HS-ETS4-3(MA). Calculate and describe the ability of a hydraulic system to multiply distance, multiply force, and effect directional change.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing and Using Models</td>
<td></td>
</tr>
<tr>
<td>• Use a model based on evidence to explain the relationships between systems or between components of a system. (HS-ETS4-2)</td>
<td></td>
</tr>
<tr>
<td>Obtaining, Evaluating, and Communicating Information</td>
<td></td>
</tr>
<tr>
<td>• Gather information from multiple authoritative sources, assessing the evidence and usefulness of each source. (HS-ETS4-1)</td>
<td></td>
</tr>
<tr>
<td>• Communicate scientific and/or technical information or ideas (e.g. about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically). (HS-ETS4-1)</td>
<td></td>
</tr>
<tr>
<td>Using Mathematics and Computational Thinking</td>
<td></td>
</tr>
<tr>
<td>• Apply techniques of algebra and functions to represent and solve scientific and engineering problems. (HS-ETS4-3)</td>
<td></td>
</tr>
</tbody>
</table>