

MCAS High School Introductory Physics

Sample Blank Supplemental Reference Sheet for Students with Accommodation A9

INSTRUCTIONS:

The following sample supplemental reference sheet is ONLY for students who have accommodation A9 listed in their IEP or 504 plan.

Before testing:

Schools should print out the following pages (or a supplemental reference sheet that has been submitted to and approved by the Department) and distribute to students who have accommodation A9 so that students can practice using the reference sheet. Schools should also remind students that during testing they may only use a supplemental reference sheet that has not yet been filled in.

During testing:

At the start of each test session, test administrators should check that that they are only providing supplemental reference sheets that have not already been filled in, and that they are providing them only to students who have accommodation A9 in their IEP or 504 plan.

Test administrators should remind students that they may not use any sheets that were filled in previously, nor any other reference materials or notes. Results **may be invalidated** for students who use a supplemental reference sheet that has already been filled in.

MCAS High School Introductory Physics

Sample Blank Supplemental Reference Sheet for Students with Accommodation A9

Note: Students may ONLY be provided with a blank reference sheet to use during testing.

Problem Solving Steps			
4. Substitute givens into equation			
5. Solve: Rearrange equation if needed			
6. Answer: Include units			

Nuclear Processes

Nuclear Fission: nuclei of atoms _____; Nuclear Fusion: nuclei of atoms _____

Motion			
$v_{average} = \frac{\Delta x}{\Delta t}$ average velo	ocity =		
$a_{average} = \frac{\Delta v}{\Delta t}$ average acce	eleration =		
Speeding up: Direction of acceleration is	the direction of velocity.		
Slowing down: Direction of acceleration is _	the direction of velocity.		
$a = acceleration$ $\Delta t = change in time$ $v = velocity$ $v_i = initial velocity$ $\Delta x = change in position (displacement)$	v _f = final velocity		

Force			
F _{net} = ma	F _{net} m a	a = acceleration F _{net} = net force F _g = gravitational force/weight	
F _g = mg	F _{net} =	g ≈ 10 m/s ² on Earth	
The force exerted by object A As mass increases, inertia	A on B is	to the force exerted by object on	

Momentum			
	p =	mv	
	Before	After	$F\Delta t = \Delta p$

Energ	ξ γ
$KE = \frac{1}{2}mv^2$	c = specific heat d = distance
$\Delta PE = mg\Delta h$	ΔE = change in energy F = force g ≈ 10 m/s² on Earth
$W = \Delta E$ $W = Fd$	Δh = change in height KE = kinetic energy m = mass
$\mathbf{Q} = \mathbf{m}\mathbf{c}\Delta\mathbf{T} \qquad \Delta T = T_f - T_i$	ΔPE = change in gravitational potential energy Q = heat added or removed ΔT = change in temperature
Higher KE of the molecules = higher	v = velocity/speed W = work

Electricity and Magnetism			
V = IR	V I R	I = current R = resistance V = potential difference (voltage)	
Series Circuit	Parallel Circuit		
V	V		
I	I		
R	R		

Waves			
$v = \lambda f$	$\frac{v}{\lambda f}$	f = frequency λ = wavelength v = velocity	
Mechanical waves travel f	astest through	, then	, then
Transverse waves move _	, longi	udinal waves mo	

Science Practices	
What is the Claim?	
What is the Evidence?	
What is the Reasoning?	
Was data asked for in the question? Did you include it in your answer?	
If asked to provide a question, is it a testable question?	

* If this sample reference sheet is used as is, or if text is removed, additional Department approval is NOT necessary. If information is added, or if a different reference sheet is created, the reference sheet must be submitted for Department approval.