A student is investigating heat transfer. The student places the ends of a curved copper bar into two insulated cups, as shown below. The copper bar is at $20^{\circ} \mathrm{C}$. Cup 1 contains $40^{\circ} \mathrm{C}$ water and cup 2 contains $20^{\circ} \mathrm{C}$ water. Each cup contains the same amount of water.

a. Describe the direction of heat flow between the cups of water in the first few minutes of the investigation.
b. Identify the primary method of heat transfer (conduction, convection, radiation) between the cups of water. Describe how the transfer of heat occurred for the method you identified.
c. After 25 minutes, the water in both cups reaches thermal equilibrium. Explain how the student can determine that thermal equilibrium has been reached between the cups.
d. On the grid in your Student Answer Booklet, copy the title, axes, and labels of the graph, as shown below. Draw two curves, one to represent the temperature of the water in cup 1 and the other to represent the temperature of the water in cup 2, over a 30 -minute period. Assume no heat is lost to the surroundings.

Temperatures of Water in Cups 1 and 2

