# 2023 MCAS Sample Student Work and Scoring Guide 

## Grade 6 Mathematics <br> Question 14: Constructed-Response

Reporting Category: Geometry<br>Standard: 6.G.A. 1 - Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.<br>Item Description: Solve mathematical problems that involve decomposing a figure into a right triangle and a trapezoid to determine the total area of the figure.<br>Calculator: Not allowed

## View item in MCAS Digital Item Library

## Scoring Guide

Select a score point in the table below to view the sample student response.

| Score* | Description |
| :---: | :--- |
| $\underline{\text { 4A }}$ | The student response demonstrates an exemplary understanding of the Geometry concepts <br> involved in finding the area of right triangles, other triangles, special quadrilaterals, and <br> polygons by composing into rectangles or decomposing into triangles and other shapes, and <br> applying these techniques in the context of solving real-world and mathematical problems. <br> The student decomposes a figure and finds its area. |
| $\underline{\mathbf{4 B}}$ | The student response demonstrates a good understanding of the Geometry concepts involved <br> in finding the area of right triangles, other triangles, special quadrilaterals, and polygons by <br> composing into rectangles or decomposing into triangles and other shapes, and applying <br> these techniques in the context of solving real-world and mathematical problems. Although <br> there is significant evidence that the student was able to recognize and apply the concepts <br> involved, some aspect of the response is flawed. As a result, the response merits 3 points. |
| $\underline{\mathbf{3}}$ | The student response demonstrates a fair understanding of the Geometry concepts involved <br> in finding the area of right triangles, other triangles, special quadrilaterals, and polygons by <br> composing into rectangles or decomposing into triangles and other shapes, and applying <br> these techniques in the context of solving real-world and mathematical problems. While some <br> aspects of the task are completed correctly, others are not. The mixed evidence provided by <br> the student merits 2 points. |
| $\underline{\mathbf{1}}$ | The student response demonstrates a minimal understanding of the Geometry concepts <br> involved in finding the area of right triangles, other triangles, special quadrilaterals, and <br> polygons by composing into rectangles or decomposing into triangles and other shapes, and <br> applying these techniques in the context of solving real-world and mathematical problems. |
| $\underline{\mathbf{0}}$ | The student response contains insufficient evidence of an understanding of the Geometry <br> concepts involved in finding the area of right triangles, other triangles, special quadrilaterals, <br> and polygons by composing into rectangles or decomposing into triangles and other shapes, <br> and applying these techniques in the context of solving real-world and mathematical <br> problems. As a result, the response does not merit any points. |

[^0]
## Score Point 4A

This question has four parts.
Figure $J K L M$ is composed of triangle $J K N$ and trapezoid $K L M N$, as shown.


The base of figure $J K L M$ is 15 inches in length. Line segment $J N$ is 3 inches in length.

## Part A

What is the length, in inches, of line segment $N M$ ?
Enter your answer in the space provided.
$9+3=12$
The length of NM is 12inches.

## Part B

What is the area, in square inches, of triangle $J K N$ ? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.
$(3 \times 4) \div 2=6$
The area of $J K N$ is 6 square inches

## Part C

What is the area, in square inches, of trapezoid $K L M N$ ? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.
$(9 \times 4)+((4 \times 3) \div 2)=42$
The area of KLMN is 42 square inches

## Part D

What is the total area, in square inches, of figure $J K L M$ ? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.
$(9 \times 4)+((4 \times 3) \div 2) 2=48$
The area of JKLM is 48 square inches

Back to Scoring Guide

## Score Point 4B

This question has four parts.
Figure $J K L M$ is composed of triangle $J K N$ and trapezoid $K L M N$, as shown.


The base of figure $J K L M$ is 15 inches in length. Line segment $J N$ is 3 inches in length.

## Part A

What is the length, in inches, of line segment $N M$ ?
Enter your answer in the space provided.

## Line segment NM is 12 inches long.

## Part B

What is the area, in square inches, of triangle $J K N$ ? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.

$$
\frac{1}{2} \times 3 \times 4=6
$$

Triangle JKN is 6 square inches.

## Part C

What is the area, in square inches, of trapezoid $K L M N$ ? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.

$$
\frac{1}{2} \times 4(9+12)=42
$$

Trapezoid KLMN is 42 square inches.

## Part D

What is the total area, in square inches, of figure $J K L M$ ? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.

$$
42+6=48
$$

Figure JKLM is 48 square inches.

## Score Point 3

This question has four parts.
Figure $J K L M$ is composed of triangle $J K N$ and trapezoid $K L M N$, as shown.


The base of figure $J K L M$ is 15 inches in length. Line segment $J N$ is 3 inches in length.

## Part A

What is the length, in inches, of line segment $N M$ ?
Enter your answer in the space provided.

## 15 inches.

## Part B

What is the area, in square inches, of triangle $J K N$ ? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.
The area of the the triangle jkn is 6 inches squared I know this because the area formula for a triangle is $A=\frac{1}{2} \times b \times h$. Now I plug my numbers in so the formula looks like this $\frac{1}{2} \times 4 \times 3$ and that equals 6 . In counclusion the area of the triangle jkn is 6 inches squared.

## Part C

What is the area, in square inches, of trapezoid $K L M N$ ? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.
The answer is 42 inches I know this because since I know the area of the triangle is 6 inches then I found the area of the rectangle. To do that you multiply $9 \times 4=36$ then I added them all together to get 42 inches squared. In counclusion the area of the trapezoid is 42 inches squared.

## Part D

What is the total area, in square inches, of figure $J K L M$ ? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.
The area of the whole trapezoid is 48 inches I know this because the area of KLMN is 42 inches then all I need to do is add the second triangle and since I know that the area of the triangle is 6 inches then all I need to do is add $42+6=48$. In counclusion the area of the whole traezoid is 48 inches squared.

## Score Point 2

This question has four parts.
Figure $J K L M$ is composed of triangle $J K N$ and trapezoid $K L M N$, as shown.


The base of figure $J K L M$ is 15 inches in length. Line segment $J N$ is 3 inches in length.

## Part A

What is the length, in inches, of line segment $N M$ ?
Enter your answer in the space provided.

## 12in

## Part B

What is the area, in square inches, of triangle $J K N$ ? Show or explain how you got your answer.
Enter your answer and your work or explanation in the space provided.

$$
\begin{aligned}
& a=\frac{1}{2} b h \\
& a=\frac{1}{2}(3 \times 4) \\
& a=\frac{1}{2} \times 12 \\
& a=6 \mathrm{in}^{2}
\end{aligned}
$$

## Part C

What is the area, in square inches, of trapezoid $K L M N$ ? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.

$$
\begin{aligned}
& a=b h \\
& a=9 \times 4 \\
& a=36 \text { in }^{2}
\end{aligned}
$$

## Part D

What is the total area, in square inches, of figure $J K L M$ ? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.

$$
\begin{aligned}
& a=b h \\
& a=15 \times 4 \\
& a=60 \mathrm{in}^{2}
\end{aligned}
$$

## Score Point 1

## This question has four parts.

Figure $J K L M$ is composed of triangle $J K N$ and trapezoid $K L M N$, as shown.


The base of figure $J K L M$ is 15 inches in length. Line segment $J N$ is 3 inches in length.

## Part A

What is the length, in inches, of line segment $N M$ ?
Enter your answer in the space provided.

$$
9+5-3=11
$$

## Part B

What is the area, in square inches, of triangle $J K N$ ? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.
$(B \cdot H) \div 2=3 \cdot 4=12 \div 2=6$ inches.

## Part C

What is the area, in square inches, of trapezoid $K L M N$ ? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.

$$
B \cdot H=11 \cdot 4=44 .
$$

## Part D

What is the total area, in square inches, of figure $J K L M$ ? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.

$$
B \cdot H=13 \cdot 4=52 .
$$

## Score Point 0

## This question has four parts.

Figure $J K L M$ is composed of triangle $J K N$ and trapezoid $K L M N$, as shown.


The base of figure $J K L M$ is 15 inches in length. Line segment $J N$ is 3 inches in length.

## Part A

What is the length, in inches, of line segment $N M$ ?
Enter your answer in the space provided.
The length of line segment NM are 9 inches, because itis parallel to line segment KL which has a length of 9 inches.

## Part B

What is the area, in square inches, of triangle $J K N$ ? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.
The area of the triangle is 18 square inches.
area $\square=(b \times h) \div 2$
$(4 \times 9) \div 2=36 \div 2=18$

## Part C

What is the area, in square inches, of trapezoid $K L M N$ ? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.
The area of the trapezoid is 180 square inches.
$9 \times 5 \times 4$
$45 \times 4=180$

## Part D

What is the total area, in square inches, of figure $J K L M$ ? Show or explain how you got your answer.

Enter your answer and your work or explanation in the space provided.
The total area of the figure is 225 square inches.
$5 \times 9 \times 5$
$45 \times 5=225$

Back to Scoring Guide


[^0]:    *Letters are used to distinguish between sample student responses that earned the same score (e.g., 4A and 4B).

