

OpenSciEd Massachusetts Standards Guidance 7th Grade: Thermal Energy

This document is to provide guidance to Massachusetts 7th grade teachers who are implementing <u>OpenSciEd</u>. This guidance assumes the OpenSciEd curriculum is being implemented across grades 6-8, following the <u>MA coherent sequence by grade level</u> (download). The following guidance identifies the MA standards addressed in the <u>Thermal Energy</u> unit, and the most effective use of the OpenSciEd materials for 7th grade teachers.

Scope and Sequence Recommendation

Implement the *Thermal Energy* unit in 7th grade after *Contact Forces* and before *Matter Cycling & Photosynthesis* units. *Thermal Energy* addresses grade 7 physical science and technology/engineering standards, and 8th grade physical science standards, and builds on the foundation set in the *Contact Forces* unit. Refer to the MA coherent sequence by grade level (download) for the complete scope and sequence recommendation.

7th Grade Standards in Thermal Energy

Standards in unit	Lessons building towards standards
7.MS-ETS1-4. Generate and analyze data from iterative testing and	Foundational Concepts for Design:
modification of a proposed object, tool, or process to optimize the object, tool,	Lessons 1-14
or process for its intended purpose.*	Lessons 1-14
	Design: Lessons 15-17 (analysis), 16-
	17 (design, test, iterate), 18 (argue)
7.MS-ETS1-7(MA). Construct a prototype of a solution to a given design	Lessons 16-17
problem.*	
7.MS-PS3-3. Apply scientific principles of energy and heat transfer to design,	Lessons 1-18
construct, and test a device to minimize or maximize thermal energy transfer.*	
7.MS-PS3-4. Conduct an investigation to determine the relationships among	Lessons 10-15
the energy transferred, how well the type of matter retains or radiates heat,	
the mass, and the change in the average kinetic energy of the particles as	
measured by the temperature of the sample.	
7.MS-PS3-5. Present evidence to support the claim that when the kinetic	Lessons 10-15
energy of an object changes, energy is transferred to or from the object.	
7.MS-PS3-6(MA). [Partial] Use a model to explain how thermal energy is	Convection: Addressed in Weather,
transferred out of hotter regions or objects and into colder ones by convection,	Climate, & Water Cycling (8th grade in
conduction, and radiation.	MA)
Why partial? Conduction and radiation are emphasized throughout the	
sensemaking process.	Conduction: Lessons 1, 3, 4, 7, 9, 10
Convection is addressed in Weather, Climate, & Water Cycling (8 th)	
grade in MA)	Radiation: Lesson 8

Additional Standards in Thermal Energy

Standards in unit	Lessons building towards standards
6.MS-ETS1-6(MA). Communicate a design solution to an intended user,	Lessons 15-18
including design features and limitations of the solution.	
6.MS-PS4-2. [Partial] Use diagrams and other models to show that both light	Lessons 8, 15-18
rays and mechanical waves are reflected, absorbed, or transmitted through	
various materials.	
Why partial? Reflection and transmission of light rays are explored in	
lesson 8 and integrated into the revised student models in lessons 15	
and beyond	
 Reflection, absorption and transmission of mechanical waves, as well as 	
more exploration of the behavior of light rays, is addressed in Light &	
Matter, Sound Waves, Forces at a Distance, and Weather, Climate &	
Water Cycling	
8.MS-PS1-4. Develop a model that describes and predicts changes in particle	Lessons 1-18
motion, relative spatial arrangement, temperature, and state of a pure	
substance when thermal energy is added or removed.	

See recommendations below for addressing these 6th and 8th grade standards.

Recommendations for Addressing Standards in Thermal Energy

Include, and teach 8.MS-PS1-4 with *Thermal Energy* as planned in the unit. This standard is included as a foundational standard for communicating explanations of the phenomena related to 7.MS-PS3-3 and 7.MS-PS3-6(MA), especially through the practice of modeling. Excluding this standard would require substantial redesign of the unit, which is not recommended.

Include, and teach 6.MS-ETS1-6(MA) with *Thermal Energy* **as planned in the unit.** This standard's engineering focus is the method through which students are assessed for their understanding of concepts across the unit. Communicating their design solution is contained within a single lesson and builds upon lessons that address 7th grade standards. Therefore, **it is not recommended to change the summative assessment for this unit**.

Include, and teach 6.MS-PS4-2 with *Thermal Energy* **as planned in the unit.** Exploring the function of light rays is integral to developing deep understanding of how heat is transferred into the cup and results in changes in kinetic energy. Therefore, **it is not recommended to change the summative assessment for this unit**.

Opportunities to Address Additional Standards in Thermal Energy

Standards in unit

<u>6.MS-ETS1-5(MA).</u> [Opportunity to address] Create visual representations of solutions to a design problem. Accurately interpret and apply scale and proportion to visual representations.

Recommendations for Extensions in Thermal Energy

Teachers have the option to extend the *Thermal Energy* Unit to include the grade 6 standard on scale drawings. To best address **6.MS-ETS1-5(MA)**, teachers can direct students to create scale drawings of their cup design plans. Note that students should be introduced to the concept of scale in 5th grade math (<u>5.NF.B.05</u>), however, a resource such as this reading on <u>Scale and Proportion</u> may be used to reinforce the concept for students.