Standards Map

Mathematics > Course Model Algebra I (Traditional Pathway) > Quantities

Accessibility Mode: Note: You are viewing this information in accessibility mode. To view the map, enlarge your window or use a larger device.

Mathematics | Course : Model Algebra I (Traditional Pathway)

Domain - Quantities

Cluster - Reason quantitatively and use units to solve problems.

[AI.N-Q.A.3] - Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.*


Resources:



    Predecessor Standards:

    • 8.EE.A.3
      Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. For example, estimate the population of the United States as 3 x 108 and the population of the world as 7 x 109, and determine that the world population is more than 20 times larger.

    Successor Standards:

    No Successor Standards found.

    Same Level Standards:

    • GEO.G-MG.A.2
      Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).*
    • HS.ESS.3.1
      Construct an explanation based on evidence for how the availability of key natural resources and changes due to variations in climate have influenced human activity. Clarification Statements: Examples of key natural resources include access to fresh water (such as rivers, lakes, and groundwater), regions of fertile soils (such as river deltas), high concentrations of minerals and fossil fuels, and biotic resources (such as fisheries and forests). Examples of changes due to variations in climate include changes to sea level and regional patterns of temperature and precipitation.
    • HS.ESS.3.5
      Analyze results from global climate models to describe how forecasts are made of the current rate of global or regional climate change and associated future impacts to Earth systems. Clarification Statement: Climate model outputs include both climate changes (such as precipitation and temperature) and associated impacts (such as on sea level, glacial ice volumes, and atmosphere and ocean composition).
    • HS.LS.2.1
      Analyze data sets to support explanations that biotic and abiotic factors affect ecosystem carrying capacity. Clarification Statements: Examples of biotic factors could include relationships among individuals (e.g., feeding relationships, symbioses, competition) and disease. Examples of abiotic factors could include climate and weather conditions, natural disasters, and availability of resources. Example data sets can be derived from simulations or historical data.
    • HS.LS.2.2
      Use mathematical representations to support explanations that biotic and abiotic factors affect biodiversity, including genetic diversity within a population and species diversity within an ecosystem. Clarification Statements: Examples of biotic factors could include relationships among individuals (feeding relationships, symbiosis, competition) and disease. Examples of abiotic factors could include climate and weather conditions, natural disasters, and availability of resources. Examples of mathematical representations include finding the average, determining trends, and using graphical comparisons of multiple sets of data.
    • HS.LS.2.4
      Use a mathematical model to describe the transfer of energy from one trophic level to another. Explain how the inefficiency of energy transfer between trophic levels affects the relative number of organisms that can be supported at each trophic level and necessitates a constant input of energy from sunlight or inorganic compounds from the environment. Clarification Statement: The model should illustrate the “10% rule” of energy transfer and show approximate amounts of available energy at each trophic level in an ecosystem (up to five trophic levels).
    • HS.LS.2.7
      Analyze direct and indirect effects of human activities on biodiversity and ecosystem health, specifically habitat fragmentation, introduction of non-native or invasive species, overharvesting, pollution, and climate change. Evaluate and refine a solution for reducing the impacts of human activities on biodiversity and ecosystem health.* Clarification Statement: Examples of solutions can include captive breeding programs, habitat restoration, pollution mitigation, energy conservation, and ecotourism.
    • HS.CHEM.1.2
      Use the periodic table model to predict and design simple reactions that result in two main classes of binary compounds, ionic and molecular. Develop an explanation based on given observational data and the electronegativity model about the relative strengths of ionic or covalent bonds. Clarification Statements: Simple reactions include synthesis (combination), decomposition, single displacement, double displacement, and combustion. Predictions of reactants and products can be represented using Lewis dot structures, chemical formulas, or physical models. Observational data include that binary ionic substances (i.e., substances that have ionic bonds), when pure, are crystalline salts at room temperature (common examples include NaCl, KI, Fe2O3); and substances that are liquids and gases at room temperature are usually made of molecules that have covalent bonds (common examples include CO2, N2, CH4, H2O, C8H18).
    • HS.CHEM.1.3
      Cite evidence to relate physical properties of substances at the bulk scale to spatial arrangements, movement, and strength of electrostatic forces among ions, small molecules, or regions of large molecules in the substances. Make arguments to account for how compositional and structural differences in molecules result in different types of intermolecular or intramolecular interactions. Clarification Statements: Substances include both pure substances in solid, liquid, gas, and networked forms (such as graphite). Examples of bulk properties of substances to compare include melting point and boiling point, density, and vapor pressure. Types of intermolecular interactions include dipole-dipole (including hydrogen bonding), ion-dipole, and dispersion forces. State Assessment Boundary: Calculations of vapor pressure by Raoult’s law, properties of heterogeneous mixtures, and names and bonding angles in molecular geometries are not expected in state assessment.
    • HS.CHEM.1.4
      Develop a model to illustrate the energy transferred during an exothermic or endothermic chemical reaction based on the bond energy difference between bonds broken (absorption of energy) and bonds formed (release of energy). Clarification Statement: Examples of models may include molecular-level drawings and diagrams of reactions or graphs showing the relative energies of reactants and products. State Assessment Boundary: Calculations using Hess’s law are not expected in state assessment.
    • HS.CHEM.1.5
      Construct an explanation based on kinetic molecular theory for why varying conditions influence the rate of a chemical reaction or a dissolving process. Design and test ways to slow down or accelerate rates of processes (chemical reactions or dissolving) by altering various conditions.* Clarification Statements: Explanations should be based on three variables in collision theory: (a) quantity of collisions per unit time, (b) molecular orientation on collision, and (c) energy input needed to induce atomic rearrangements. Conditions that affect these three variables include temperature, pressure, concentrations of reactants, agitation, particle size, surface area, and addition of a catalyst. State Assessment Boundary: State assessment will be limited to simple reactions in which there are only two reactants and to specifying the change in only one variable at a time.
    • HS.CHEM.1.7
      Use mathematical representations and provide experimental evidence to support the claim that atoms, and therefore mass, are conserved during a chemical reaction. Use the mole concept and proportional relationships to evaluate the quantities (masses or moles) of specific reactants needed in order to obtain a specific amount of product. Clarification Statements: Mathematical representations include balanced chemical equations that represent the laws of conservation of mass and constant composition (definite proportions), mass-to-mass stoichiometry, and calculations of percent yield. Evaluations may involve mass-to-mass stoichiometry and atom economy comparisons, but only for single-step reactions that do not involve complexes.
    • HS.CHEM.2.6
      Communicate scientific and technical information about the molecular-level structures of polymers, ionic compounds, acids and bases, and metals to justify why these are useful in the functioning of designed materials.* Clarification Statement: Examples could include comparing molecules with simple molecular geometries; analyzing how pharmaceuticals are designed to interact with specific receptors; and considering why electrically conductive materials are often made of metal, household cleaning products often contain ionic compounds to make materials soluble in water, or materials that need to be flexible but durable are made up of polymers. State Assessment Boundary: State assessment will be limited to comparing substances of the same type with one compositional or structural feature different.
    • HS.PHY.2.1
      Analyze data to support the claim that Newton’s second law of motion is a mathematical model describing change in motion (the acceleration) of objects when acted on by a net force. Clarification Statements: Examples of data could include tables or graphs of position or velocity as a function of time for objects subject to a net unbalanced force, such as a falling object, an object rolling down a ramp, and a moving object being pulled by a constant force. Forces can include contact forces, including friction, and forces acting at a distance, such as gravity and magnetic forces. State Assessment Boundary: Variable forces are not expected in state assessment.