Standards Map

Science and Technology/Engineering > Grade High School > Biology

Accessibility Mode: Note: You are viewing this information in accessibility mode. To view the map, enlarge your window or use a larger device.

Science and Technology/Engineering | Grade : High School

Discipline - Biology

Core Idea - Ecosystems: Interactions, Energy, and Dynamics

[HS.LS.2.4] - Use a mathematical model to describe the transfer of energy from one trophic level to another. Explain how the inefficiency of energy transfer between trophic levels affects the relative number of organisms that can be supported at each trophic level and necessitates a constant input of energy from sunlight or inorganic compounds from the environment. Clarification Statement: The model should illustrate the “10% rule” of energy transfer and show approximate amounts of available energy at each trophic level in an ecosystem (up to five trophic levels).


Resources:



Predecessor Standards:

  • 7.LS.2.3
    Develop a model to describe that matter and energy are transferred among living and nonliving parts of an ecosystem and that both matter and energy are conserved through these processes. Clarification Statements: Cycling of matter should include the role of photosynthesis, cellular respiration, and decomposition, as well as transfer among producers, consumers (primary, secondary, and tertiary), and decomposers. Models may include food webs and food chains. State Assessment Boundary: Cycling of specific atoms (such as carbon or oxygen), or the biochemical steps of photosynthesis, cellular respiration, and decomposition are not expected in state assessment.

Successor Standards:

No Successor Standards found.

Same Level Standards:

  • AI.N-Q.A.1
    Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.*
  • AI.N-Q.A.2
    Define appropriate quantities for the purpose of descriptive modeling.*
  • AI.N-Q.A.3
    Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.*
  • AI.F-LE.A.1
    Distinguish between situations that can be modeled with linear functions and with exponential functions.*
  • AI.F-LE.B.5
    Interpret the parameters in a linear or exponential function (of the form f(x) = bx + k) in terms of a context.*
  • HS.LS.1.6
    Construct an explanation based on evidence that organic molecules are primarily composed of six elements, where carbon, hydrogen, and oxygen atoms may combine with nitrogen, sulfur, and phosphorus to form monomers that can further combine to form large carbon-based macromolecules. Clarification Statements: Monomers include amino acids, mono- and disaccharides, nucleotides, and fatty acids.• Organic macromolecules include proteins, carbohydrates (polysaccharides), nucleic acids, and lipids. State Assessment Boundary: Details of specific chemical reactions or identification of specific macromolecule structures are not expected in state assessment.