Standards Map

Science and Technology/Engineering > Grade High School > Biology

Accessibility Mode: Note: You are viewing this information in accessibility mode. To view the map, enlarge your window or use a larger device.

Science and Technology/Engineering | Grade : High School

Discipline - Biology

Core Idea - From Molecules to Organisms: Structures and Processes

[HS.LS.1.7] - Use a model to illustrate that aerobic cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and new bonds form, resulting in new compounds and a net transfer of energy. Clarification Statements: Emphasis is on the conceptual understanding of the inputs and outputs of the process of aerobic cellular respiration. Examples of models could include diagrams, chemical equations, and conceptual models. The model should include the role of ATP for energy transfer in this process. Food molecules include sugars (carbohydrates), fats (lipids), and proteins. State Assessment Boundary: Identification of the steps or specific processes involved in cellular respiration is not expected in state assessment.


Resources:



Predecessor Standards:

  • 8.LS.1.7
    Use informational text to describe that food molecules, including carbohydrates, proteins, and fats, are broken down and rearranged through chemical reactions forming new molecules that support cell growth and/or release of energy. State Assessment Boundary: Specific details of the chemical reaction for cellular respiration, biochemical steps of breaking down food, or the resulting molecules (e.g., carbohydrates are broken down into monosaccharides) are not expected in state assessment.

Successor Standards:

No Successor Standards found.

Same Level Standards:

  • RCA-ST.9-10.7
    Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.
  • HS.LS.1.6
    Construct an explanation based on evidence that organic molecules are primarily composed of six elements, where carbon, hydrogen, and oxygen atoms may combine with nitrogen, sulfur, and phosphorus to form monomers that can further combine to form large carbon-based macromolecules. Clarification Statements: Monomers include amino acids, mono- and disaccharides, nucleotides, and fatty acids.• Organic macromolecules include proteins, carbohydrates (polysaccharides), nucleic acids, and lipids. State Assessment Boundary: Details of specific chemical reactions or identification of specific macromolecule structures are not expected in state assessment.